
ramsey/uuid
Release stable

Ben Ramsey

2024-04-27





CONTENTS

1 Contents 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 RFC 4122 UUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Nonstandard UUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Using In a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7 Testing With UUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.8 Upgrading ramsey/uuid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.9 Frequently Asked Questions (FAQs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.10 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.11 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.12 ramsey/uuid for Enterprise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2 Indices and Tables 69

PHP Namespace Index 71

Index 73

i



ii



ramsey/uuid, Release stable

For ramsey/uuid stable. Updated on 2024-04-27.

This work is licensed under the Creative Commons Attribution 4.0 International license.

Support ramsey/uuid!

Your support encourages and motivates me to continue building and maintaining open source software. If you benefit
from my work, consider supporting me financially.

You may support ramsey/uuid as an individual through GitHub Sponsors or as a company through the Tidelift Sub-
scription. With the Tidelift Subscription, you can get commercial maintenance and assurances, while supporting my
work.

Learn more about ramsey/uuid for enterprise!

CONTENTS 1

https://github.com/ramsey/uuid
https://creativecommons.org/licenses/by/4.0/
https://github.com/sponsors/ramsey


ramsey/uuid, Release stable

2 CONTENTS



CHAPTER

ONE

CONTENTS

1.1 Introduction

ramsey/uuid is a PHP library for generating and working with RFC 4122 version 1, 2, 3, 4, 5, 6, and 7 universally
unique identifiers (UUID). ramsey/uuid also supports optional and non-standard features, such as GUIDs and other
approaches for encoding/decoding UUIDs.

1.1.1 What Is a UUID?

A universally unique identifier, or UUID, is a 128-bit unsigned integer, usually represented as a hexadecimal string
split into five groups with dashes. The most widely-known and used types of UUIDs are defined by RFC 4122.

A UUID, when encoded in hexadecimal string format, looks like:

ebb5c735-0308-4e3c-9aea-8a270aebfe15

The probability of duplicating a UUID is close to zero, so they are a great choice for generating unique identifiers in
distributed systems.

UUIDs can also be stored in binary format, as a string of 16 bytes.

1.2 Getting Started

1.2.1 Requirements

ramsey/uuid stable requires the following:

• PHP 8.0+

• ext-json

The JSON extension is normally enabled by default, but it is possible to disable it. Other required extensions include
PCRE and SPL. These standard extensions cannot be disabled without patching PHP’s build system and/or C sources.

ramsey/uuid recommends installing/enabling the following extensions. While not required, these extensions improve
the performance of ramsey/uuid.

• ext-gmp

• ext-bcmath

3

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://www.php.net/manual/en/book.json.php
https://www.php.net/manual/en/book.pcre.php
https://www.php.net/manual/en/book.spl.php
https://www.php.net/manual/en/book.gmp.php
https://www.php.net/manual/en/book.bc.php


ramsey/uuid, Release stable

1.2.2 Install With Composer

The only supported installation method for ramsey/uuid is Composer. Use the following command to add ramsey/uuid
to your project dependencies:

composer require ramsey/uuid

1.2.3 Using ramsey/uuid

After installing ramsey/uuid, the quickest way to get up-and-running is to use the static generation methods.

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

printf(
"UUID: %s\nVersion: %d\n",
$uuid->toString(),
$uuid->getFields()->getVersion()

);

This will return an instance of Ramsey\Uuid\Rfc4122\UuidV4.

Tip:

Use the Interfaces

Feel free to use instanceof to check the specific instance types of UUIDs. However, when using type hints, it’s best
to use the interfaces.

The most lenient interface is Ramsey\Uuid\UuidInterface, while Ramsey\Uuid\Rfc4122\UuidInterface en-
sures the UUIDs you’re using conform to the RFC 4122 standard. If you’re not sure which one to use, start with the
stricter Rfc4122\UuidInterface.

ramsey/uuid provides a number of helpful static methods that help you work with and generate most types of UUIDs,
without any special customization of the library.

Method Description
Uuid::uuid1() This generates a Version 1: Gregorian Time UUID.
Uuid::uuid2() This generates a Version 2: DCE Security UUID.
Uuid::uuid3() This generates a Version 3: Name-based (MD5) UUID.
Uuid::uuid4() This generates a Version 4: Random UUID.
Uuid::uuid5() This generates a Version 5: Name-based (SHA-1) UUID.
Uuid::uuid6() This generates a Version 6: Reordered Time UUID.
Uuid::uuid7() This generates a Version 7: Unix Epoch Time UUID.
Uuid::isValid() Checks whether a string is a valid UUID.
Uuid::fromString() Creates a UUID instance from a string UUID.
Uuid::fromBytes() Creates a UUID instance from a 16-byte string.
Uuid::fromInteger() Creates a UUID instance from a string integer.
Uuid::fromDateTime() Creates a version 1 UUID instance from a PHP DateTimeInterface.

4 Chapter 1. Contents

https://getcomposer.org
https://tools.ietf.org/html/rfc4122
https://www.php.net/datetimeinterface


ramsey/uuid, Release stable

1.3 RFC 4122 UUIDs

1.3.1 Version 1: Gregorian Time

Attention: If you need a time-based UUID, and you don’t need the other features included in version 1 UUIDs,
we recommend using version 7 UUIDs.

A version 1 UUID uses the current time, along with the MAC address (or node) for a network interface on the local
machine. This serves two purposes:

1. You can know when the identifier was created.

2. You can know where the identifier was created.

In a distributed system, these two pieces of information can be valuable. Not only is there no need for a central authority
to generate identifiers, but you can determine what nodes in your infrastructure created the UUIDs and at what time.

Tip: It is also possible to use a randomly-generated node, rather than a hardware address. This is useful for when
you don’t want to leak machine information, while still using a UUID based on time. Keep reading to find out how.

By default, ramsey/uuid will attempt to look up a MAC address for the machine it is running on, using this value as the
node. If it cannot find a MAC address, it will generate a random node.

Listing 1: Generate a version 1, Gregorian time UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid1();

printf(
"UUID: %s\nVersion: %d\nDate: %s\nNode: %s\n",
$uuid->toString(),
$uuid->getFields()->getVersion(),
$uuid->getDateTime()->format('r'),
$uuid->getFields()->getNode()->toString()

);

This will generate a version 1 UUID and print out its string representation, the time the UUID was created, and the
node used to create the UUID.

It will look something like this:

UUID: e22e1622-5c14-11ea-b2f3-0242ac130003
Version: 1
Date: Sun, 01 Mar 2020 23:32:15 +0000
Node: 0242ac130003

You may provide custom values for version 1 UUIDs, including node and clock sequence.

1.3. RFC 4122 UUIDs 5



ramsey/uuid, Release stable

Listing 2: Provide custom node and clock sequence to create a version 1,
Gregorian time UUID

use Ramsey\Uuid\Provider\Node\StaticNodeProvider;
use Ramsey\Uuid\Type\Hexadecimal;
use Ramsey\Uuid\Uuid;

$nodeProvider = new StaticNodeProvider(new Hexadecimal('121212121212'));
$clockSequence = 16383;

$uuid = Uuid::uuid1($nodeProvider->getNode(), $clockSequence);

Tip: Version 1 UUIDs generated in ramsey/uuid are instances of UuidV1. Check out the Ramsey\Uuid\Rfc4122\
UuidV1 API documentation to learn more about what you can do with a UuidV1 instance.

Providing a Custom Node

You may override the default behavior by passing your own node value when generating a version 1 UUID.

In the example above, we saw how to pass a custom node and clock sequence. An interesting thing to note about the
example is its use of StaticNodeProvider. Why didn’t we pass in a Hexadecimal value, instead?

According to RFC 4122, section 4.5, node values that do not identify the host — in other words, our own custom node
value — should set the unicast/multicast bit to one (1). This bit will never be set in IEEE 802 addresses obtained from
network cards, so it helps to distinguish it from a hardware MAC address.

The StaticNodeProvider sets this bit for you. This is why we used it rather than providing a Hexadecimal value directly.

Recall from the example that the node value we set was 121212121212, but if you take a look at this value with
$uuid->getFields()->getNode()->toString(), it becomes:

131212121212

That’s a result of this bit being set by the StaticNodeProvider.

Generating a Random Node

Instead of providing a custom node, you may also generate a random node each time you generate a version 1 UUID.
The RandomNodeProvider may be used to generate a random node value, and like the StaticNodeProvider, it also sets
the unicast/multicast bit for you.

Listing 3: Provide a random node value to create a version 1, Gregorian
time UUID

use Ramsey\Uuid\Provider\Node\RandomNodeProvider;
use Ramsey\Uuid\Uuid;

$nodeProvider = new RandomNodeProvider();

$uuid = Uuid::uuid1($nodeProvider->getNode());

6 Chapter 1. Contents

https://tools.ietf.org/html/rfc4122#section-4.5


ramsey/uuid, Release stable

What’s a Clock Sequence?

The clock sequence part of a version 1 UUID helps prevent collisions. Since this UUID is based on a timestamp and a
machine node value, it is possible for collisions to occur for multiple UUIDs generated within the same microsecond
on the same machine.

The clock sequence is the solution to this problem.

The clock sequence is a 14-bit number — this supports values from 0 to 16,383 — which means it should be possible
to generate up to 16,384 UUIDs per microsecond with the same node value, before hitting a collision.

Caution: ramsey/uuid does not use stable storage for clock sequence values. Instead, all clock sequences are
randomly-generated. If you are generating a lot of version 1 UUIDs every microsecond, it is possible to hit collisions
because of the random values. If this is the case, you should use your own mechanism for generating clock sequence
values, to ensure against randomly-generated duplicates.

See section 4.2 of RFC 4122, for more information.

Privacy Concerns

As discussed earlier in this section, version 1 UUIDs use a MAC address from a local hardware network interface. This
means it is possible to uniquely identify the machine on which a version 1 UUID was created.

If the value provided by the timestamp of a version 1 UUID is important to you, but you do not wish to expose the
interface address of any of your local machines, see Generating a Random Node or Providing a Custom Node.

If you do not need an identifier with a timestamp value embedded in it, see Version 4: Random to learn about random
UUIDs.

1.3.2 Version 2: DCE Security

Tip: DCE Security UUIDs are so-called because they were defined as part of the “Authentication and Security Ser-
vices” for the Distributed Computing Environment (DCE) in the early 1990s.

Version 2 UUIDs are not widely used. See Problems With Version 2 UUIDs before deciding whether to use them.

Like a version 1 UUID, a version 2 UUID uses the current time, along with the MAC address (or node) for a network
interface on the local machine. Additionally, a version 2 UUID replaces the low part of the time field with a local
identifier such as the user ID or group ID of the local account that created the UUID. This serves three purposes:

1. You can know when the identifier was created (see Lossy Timestamps).

2. You can know where the identifier was created.

3. You can know who created the identifier.

In a distributed system, these three pieces of information can be valuable. Not only is there no need for a central
authority to generate identifiers, but you can determine what nodes in your infrastructure created the UUIDs, at what
time they were created, and the account on the machine that created them.

By default, ramsey/uuid will attempt to look up a MAC address for the machine it is running on, using this value as the
node. If it cannot find a MAC address, it will generate a random node.

1.3. RFC 4122 UUIDs 7

https://tools.ietf.org/html/rfc4122#section-4.2
https://en.wikipedia.org/wiki/Distributed_Computing_Environment


ramsey/uuid, Release stable

Listing 4: Use a domain to generate a version 2, DCE Security UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid2(Uuid::DCE_DOMAIN_PERSON);

printf(
"UUID: %s\nVersion: %d\nDate: %s\nNode: %s\nDomain: %s\nID: %s\n",
$uuid->toString(),
$uuid->getFields()->getVersion(),
$uuid->getDateTime()->format('r'),
$uuid->getFields()->getNode()->toString(),
$uuid->getLocalDomainName(),
$uuid->getLocalIdentifier()->toString()

);

This will generate a version 2 UUID and print out its string representation, the time the UUID was created, and the
node used to create it, as well as the name of the local domain specified and the local domain identifier (in this case, a
POSIX UID, automatically obtained from the local machine).

It will look something like this:

UUID: 000001f5-5e9a-21ea-9e00-0242ac130003
Version: 2
Date: Thu, 05 Mar 2020 04:30:10 +0000
Node: 0242ac130003
Domain: person
ID: 501

Just as with version 1 UUIDs, you may provide custom values for version 2 UUIDs, including local identifier, node,
and clock sequence.

Listing 5: Provide custom identifier, node, and clock sequence to create
a version 2, DCE Security UUID

use Ramsey\Uuid\Provider\Node\StaticNodeProvider;
use Ramsey\Uuid\Type\Hexadecimal;
use Ramsey\Uuid\Type\Integer;
use Ramsey\Uuid\Uuid;

$localId = new Integer(1001);
$nodeProvider = new StaticNodeProvider(new Hexadecimal('121212121212'));
$clockSequence = 63;

$uuid = Uuid::uuid2(
Uuid::DCE_DOMAIN_ORG,
$localId,
$nodeProvider->getNode(),
$clockSequence

);

Tip: Version 2 UUIDs generated in ramsey/uuid are instances of UuidV2. Check out the Ramsey\Uuid\Rfc4122\

8 Chapter 1. Contents

https://en.wikipedia.org/wiki/POSIX


ramsey/uuid, Release stable

UuidV2 API documentation to learn more about what you can do with a UuidV2 instance.

Domains

The domain value tells what the local identifier represents.

If using the person or group domains, ramsey/uuid will attempt to look up these values from the local machine. On
POSIX systems, it will use id -u and id -g, respectively. On Windows, it will use whoami and wmic.

The org domain is site-defined. Its intent is to identify the organization that generated the UUID, but since this can
have different meanings for different companies and projects, you get to define its value.

Table 1: DCE Security Domains

Constant Description
Uuid::DCE_DOMAIN_PERSON The local identifier refers to a person (e.g., UID).
Uuid::DCE_DOMAIN_GROUP The local identifier refers to a group (e.g., GID).
Uuid::DCE_DOMAIN_ORG The local identifier refers to an organization (this is site-defined).

Note: According to section 5.2.1.1 of DCE 1.1: Authentication and Security Services, the domain “can potentially
hold values outside the range [0, 28 – 1]; however, the only values currently registered are in the range [0, 2].”

As a result, ramsey/uuid supports only the person, group, and org domains.

Custom and Random Nodes

In the example above, we provided a custom node when generating a version 2 UUID. You may also generate random
node values.

To learn more, see the Providing a Custom Node and Generating a Random Node sections under Version 1: Gregorian
Time.

Clock Sequence

In a version 2 UUID, the clock sequence serves the same purpose as in a version 1 UUID. See What’s a Clock Sequence?
to learn more.

Warning: The clock sequence in a version 2 UUID is a 6-bit number. It supports values from 0 to 63. This is
different from the 14-bit number used by version 1 UUIDs.

See Limited Uniqueness to understand how this affects version 2 UUIDs.

1.3. RFC 4122 UUIDs 9

https://en.wikipedia.org/wiki/POSIX
https://publications.opengroup.org/c311


ramsey/uuid, Release stable

Problems With Version 2 UUIDs

Version 2 UUIDs can be useful for the data they contain. However, there are trade-offs in choosing to use them.

Privacy

Unless using a randomly-generated node, version 2 UUIDs use the MAC address for a local hardware interface as the
node value. In addition, they use a local identifier — usually an account or group ID. Some may consider the use of
these identifying features a breach of privacy. The use of a timestamp further complicates the issue, since these UUIDs
could be used to identify a user account on a specific machine at a specific time.

If you don’t need an identifier with a local identifier and timestamp value embedded in it, see Version 4: Random to
learn about random UUIDs.

Limited Uniqueness

With the inclusion of the local identifier and domain comes a serious limitation in the number of unique UUIDs that
may be created. This is because:

1. The local identifier replaces the lower 32 bits of the timestamp.

2. The domain replaces the lower 8 bits of the clock sequence.

As a result, the timestamp advances — the clock ticks — only once every 429.49 seconds (about 7 minutes). This
means the clock sequence is important to ensure uniqueness, but since the clock sequence is only 6 bits, compared
to 14 bits for version 1 UUIDs, only 64 unique UUIDs per combination of node, domain, and identifier may be
generated per 7-minute tick of the clock.

You can overcome this lack of uniqueness by using a random node, which provides 47 bits of randomness to the UUID
— after setting the unicast/multicast bit (see discussion on Providing a Custom Node) — increasing the number of
UUIDs per 7-minute clock tick to 253 (or 9,007,199,254,740,992), at the expense of remaining locally unique.

Note: This lack of uniqueness did not present a problem for DCE, since:

[T]he security architecture of DCE depends upon the uniqueness of security-version UUIDs only within the
context of a cell; that is, only within the context of the local [Registration Service’s] (persistent) datastore,
and that degree of uniqueness can be guaranteed by the RS itself (namely, the RS maintains state in its
datastore, in the sense that it can always check that every UUID it maintains is different from all other
UUIDs it maintains). In other words, while security-version UUIDs are (like all UUIDs) specified to be
“globally unique in space and time”, security is not compromised if they are merely “locally unique per
cell”.

—DCE 1.1: Authentication and Security Services, section 5.2.1.1

10 Chapter 1. Contents

https://publications.opengroup.org/c311


ramsey/uuid, Release stable

Lossy Timestamps

Version 2 UUIDs are generated in the same way as version 1 UUIDs, but the low part of the timestamp (the time_low
field) is replaced by a 32-bit integer that represents a local identifier. Because of this, not only do version 2 UUIDs
have limited uniqueness, but they also lack time precision.

When reconstructing the timestamp to return a DateTimeInterface instance from UuidV2::getDateTime(), we re-
place the 32 lower bits of the timestamp with zeros, since the local identifier should not be part of the timestamp. This
results in a loss of precision, causing the timestamp to be off by a range of 0 to 429.4967295 seconds (or 7 minutes, 9
seconds, and 496,730 microseconds).

When using version 2 UUIDs, treat the timestamp as an approximation. At worst, it could be off by about 7 minutes.

Hint: If the value 429.4967295 looks familiar, it’s because it directly corresponds to 232 – 1, or 0xffffffff. The local
identifier is 32-bits, and we have set each of these bits to 0, so the maximum range of timestamp drift is 0x00000000
to 0xffffffff (counted in 100-nanosecond intervals).

1.3.3 Version 3: Name-based (MD5)

Attention: RFC 4122 states, “If backward compatibility is not an issue, SHA-1 is preferred.” As a result, the use
of version 5 UUIDs is preferred over version 3 UUIDs, unless you have a specific use-case for version 3 UUIDs.

Note: To learn about name-based UUIDs, read the section Version 5: Name-based (SHA-1). Version 3 UUIDs behave
exactly the same as version 5 UUIDs. The only difference is the hashing algorithm used to generate the UUID.

Version 3 UUIDs use MD5 as the hashing algorithm for combining the namespace and the name.

Due to the use of a different hashing algorithm, version 3 UUIDs generated with any given namespace and name will
differ from version 5 UUIDs generated using the same namespace and name.

As an example, let’s take a look at generating a version 3 UUID using the same namespace and name used in “Generate
a version 5, name-based UUID for a URL.”

Listing 6: Generate a version 3, name-based UUID for a URL

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid3(Uuid::NAMESPACE_URL, 'https://www.php.net');

Even though the namespace and name are the same, the version 3 UUID generated will always be
3f703955-aaba-3e70-a3cb-baff6aa3b28f.

Likewise, we can use the custom namespace we created in “Generate a custom namespace UUID” to generate a version
3 UUID, but the result will be different from the version 5 UUID with the same custom namespace and name.

Listing 7: Use a custom namespace to create version 3, name-based
UUIDs

use Ramsey\Uuid\Uuid;

(continues on next page)

1.3. RFC 4122 UUIDs 11

https://www.php.net/datetimeinterface
https://tools.ietf.org/html/rfc4122
https://en.wikipedia.org/wiki/MD5


ramsey/uuid, Release stable

(continued from previous page)

const WIDGET_NAMESPACE = '4bdbe8ec-5cb5-11ea-bc55-0242ac130003';

$uuid = Uuid::uuid3(WIDGET_NAMESPACE, 'widget/1234567890');

With this custom namespace, the version 3 UUID for the name “widget/1234567890” will always be
53564aa3-4154-3ca5-ac90-dba59dc7d3cb.

Tip: Version 3 UUIDs generated in ramsey/uuid are instances of UuidV3. Check out the Ramsey\Uuid\Rfc4122\
UuidV3 API documentation to learn more about what you can do with a UuidV3 instance.

1.3.4 Version 4: Random

Version 4 UUIDs are perhaps the most popular form of UUID. They are randomly-generated and do not contain any
information about the time they are created or the machine that generated them. If you don’t care about this information,
then a version 4 UUID might be perfect for your needs.

Listing 8: Generate a version 4, random UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

printf(
"UUID: %s\nVersion: %d\n",
$uuid->toString(),
$uuid->getFields()->getVersion()

);

This will generate a version 4 UUID and print out its string representation. It will look something like this:

UUID: 1ee9aa1b-6510-4105-92b9-7171bb2f3089
Version: 4

Tip: Version 4 UUIDs generated in ramsey/uuid are instances of UuidV4. Check out the Ramsey\Uuid\Rfc4122\
UuidV4 API documentation to learn more about what you can do with a UuidV4 instance.

1.3.5 Version 5: Name-based (SHA-1)

Danger: Since version 3 and version 5 UUIDs essentially use a salt (the namespace) to hash data, it may be
tempting to use them to hash passwords. DO NOT do this under any circumstances! You should not store any
sensitive information in a version 3 or version 5 UUID, since MD5 and SHA-1 are insecure and have known attacks
demonstrated against them. Use these types of UUIDs as identifiers only.

The first thing that comes to mind with most people think of a UUID is a random identifier, but name-based UUIDs
aren’t random at all. In fact, they’re deterministic. For any given identical namespace and name, you will always
generate the same UUID.

12 Chapter 1. Contents

https://en.wikipedia.org/wiki/Hash_function_security_summary
https://en.wikipedia.org/wiki/Hash_function_security_summary


ramsey/uuid, Release stable

Name-based UUIDs are useful when you need an identifier that’s based on something’s name — think identity — and
will always be the same no matter where or when it is created.

For example, let’s say I want to create an identifier for a URL. I could use a version 1 or version 4 UUID to create an
identifier for the URL, but what if I’m working with a distributed system, and I want to ensure that every client in this
system can always generate the same identifier for any given URL?

This is where a name-based UUID comes in handy.

Name-based UUIDs combine a namespace with a name. This way, the UUIDs are unique to the namespace they’re
created in. RFC 4122 defines some predefined namespaces, one of which is for URLs.

Note: Version 5 UUIDs use SHA-1 as the hashing algorithm for combining the namespace and the name.

Listing 9: Generate a version 5, name-based UUID for a URL

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid5(Uuid::NAMESPACE_URL, 'https://www.php.net');

The UUID generated will always be the same, as long as the namespace and name are the same. The version 5 UUID
for “https://www.php.net” in the URL namespace will always be a8f6ae40-d8a7-58f0-be05-a22f94eca9ec. See
for yourself. Run the code above, and you’ll see it always generates the same UUID.

Tip: Version 5 UUIDs generated in ramsey/uuid are instances of UuidV5. Check out the Ramsey\Uuid\Rfc4122\
UuidV5 API documentation to learn more about what you can do with a UuidV5 instance.

Custom Namespaces

If you’re working with name-based UUIDs for names that don’t fit into any of the predefined namespaces, or you don’t
want to use any of the predefined namespaces, you can create your own namespace.

The best way to do this is to generate a version 1 or version 4 UUID and save this UUID as your namespace.

Listing 10: Generate a custom namespace UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid1();

printf("My namespace UUID is %s\n", $uuid->toString());

This will generate a version 1, Gregorian time UUID, which we’ll store to a constant so we can reuse it as our own
custom namespace.

Listing 11: Use a custom namespace to create version 5, name-based
UUIDs

use Ramsey\Uuid\Uuid;

const WIDGET_NAMESPACE = '4bdbe8ec-5cb5-11ea-bc55-0242ac130003';

$uuid = Uuid::uuid5(WIDGET_NAMESPACE, 'widget/1234567890');

1.3. RFC 4122 UUIDs 13

https://tools.ietf.org/html/rfc4122
https://en.wikipedia.org/wiki/SHA-1
https://www.php.net


ramsey/uuid, Release stable

With this custom namespace, the version 5 UUID for the name “widget/1234567890” will always be
a35477ae-bfb1-5f2e-b5a4-4711594d855f.

We can publish this namespace, allowing others to use it to generate identifiers for widgets. When two or more systems
try to reference the same widget, they’ll end up generating the same identifier for it, which is exactly what we want.

1.3.6 Version 6: Reordered Time

Note: Version 6, reordered time UUIDs are a new format of UUID, proposed in an Internet-Draft under review at the
IETF. While the draft is still going through the IETF process, the version 6 format is not expected to change in any way
that breaks compatibility.

Attention: If you need a time-based UUID, and you don’t need the other features included in version 6 UUIDs,
we recommend using version 7 UUIDs.

Version 6 UUIDs solve two problems that have long existed with the use of version 1 UUIDs:

1. Scattered database records

2. Inability to sort by an identifier in a meaningful way (i.e., insert order)

To overcome these issues, we need the ability to generate UUIDs that are monotonically increasing while still providing
all the benefits of version 1 UUIDs.

Version 6 UUIDs do this by storing the time in standard byte order, instead of breaking it up and rearranging the time
bytes, according to the RFC 4122 definition. All other fields remain the same, and the version maintains its position,
according to RFC 4122.

In all other ways, version 6 UUIDs function like version 1 UUIDs.

Tip: Prior to version 4.0.0, ramsey/uuid provided a solution for this with the ordered-time codec. Use of the ordered-
time codec is still valid and acceptable. However, you may replace UUIDs generated using the ordered-time codec with
version 6 UUIDs. Keep reading to find out how.

Listing 12: Generate a version 6, reordered time UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid6();

printf(
"UUID: %s\nVersion: %d\nDate: %s\nNode: %s\n",
$uuid->toString(),
$uuid->getFields()->getVersion(),
$uuid->getDateTime()->format('r'),
$uuid->getFields()->getNode()->toString()

);

This will generate a version 6 UUID and print out its string representation, the time the UUID was created, and the
node used to create the UUID.

It will look something like this:

14 Chapter 1. Contents

https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00#section-5.6
https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/
https://tools.ietf.org/html/rfc4122


ramsey/uuid, Release stable

UUID: 1ea60f56-b67b-61fc-829a-0242ac130003
Version: 6
Date: Sun, 08 Mar 2020 04:29:37 +0000
Node: 0242ac130003

You may provide custom values for version 6 UUIDs, including node and clock sequence.

Listing 13: Provide custom node and clock sequence to create a version
6, reordered time UUID

use Ramsey\Uuid\Provider\Node\StaticNodeProvider;
use Ramsey\Uuid\Type\Hexadecimal;
use Ramsey\Uuid\Uuid;

$nodeProvider = new StaticNodeProvider(new Hexadecimal('121212121212'));
$clockSequence = 16383;

$uuid = Uuid::uuid6($nodeProvider->getNode(), $clockSequence);

Tip: Version 6 UUIDs generated in ramsey/uuid are instances of UuidV6. Check out the Ramsey\Uuid\Rfc4122\
UuidV6 API documentation to learn more about what you can do with a UuidV6 instance.

Custom and Random Nodes

In the example above, we provided a custom node when generating a version 6 UUID. You may also generate random
node values.

To learn more, see the Providing a Custom Node and Generating a Random Node sections under Version 1: Gregorian
Time.

Clock Sequence

In a version 6 UUID, the clock sequence serves the same purpose as in a version 1 UUID. See What’s a Clock Sequence?
to learn more.

Version 1-to-6 Conversion

It is possible to convert back-and-forth between version 6 and version 1 UUIDs.

Listing 14: Convert a version 1 UUID to a version 6 UUID

use Ramsey\Uuid\Rfc4122\UuidV1;
use Ramsey\Uuid\Rfc4122\UuidV6;
use Ramsey\Uuid\Uuid;

$uuid1 = Uuid::fromString('3960c5d8-60f8-11ea-bc55-0242ac130003');

if ($uuid1 instanceof UuidV1) {
$uuid6 = UuidV6::fromUuidV1($uuid1);

}

1.3. RFC 4122 UUIDs 15



ramsey/uuid, Release stable

Listing 15: Convert a version 6 UUID to a version 1 UUID

use Ramsey\Uuid\Rfc4122\UuidV6;
use Ramsey\Uuid\Uuid;

$uuid6 = Uuid::fromString('1ea60f83-960c-65d8-bc55-0242ac130003');

if ($uuid6 instanceof UuidV6) {
$uuid1 = $uuid6->toUuidV1();

}

Ordered-time to Version 6 Conversion

You may convert UUIDs previously generated and stored using the ordered-time codec into version 6 UUIDs.

Caution: If you perform this conversion, the bytes and string representation of your UUIDs will change. This will
break any software that expects your identifiers to be fixed.

Listing 16: Convert an ordered-time codec encoded UUID to a version 6
UUID

use Ramsey\Uuid\Codec\OrderedTimeCodec;
use Ramsey\Uuid\Rfc4122\UuidV1;
use Ramsey\Uuid\Rfc4122\UuidV6;
use Ramsey\Uuid\UuidFactory;

// The bytes of a version 1 UUID previously stored in some datastore
// after encoding to bytes with the OrderedTimeCodec.
$bytes = hex2bin('11ea60faf17c8af6ad23acde48001122');

$factory = new UuidFactory();
$codec = new OrderedTimeCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$orderedTimeUuid = $factory->fromBytes($bytes);

if ($orderedTimeUuid instanceof UuidV1) {
$uuid6 = UuidV6::fromUuidV1($orderedTimeUuid);

}

16 Chapter 1. Contents



ramsey/uuid, Release stable

Privacy Concerns

Like version 1 UUIDs, version 6 UUIDs use a MAC address from a local hardware network interface. This means it is
possible to uniquely identify the machine on which a version 6 UUID was created.

If the value provided by the timestamp of a version 6 UUID is important to you, but you do not wish to expose the
interface address of any of your local machines, see Custom and Random Nodes.

If you do not need an identifier with a node value embedded in it, but you still need the benefit of a monotonically
increasing unique identifier, see Version 7: Unix Epoch Time.

1.3.7 Version 7: Unix Epoch Time

Note: Version 7, Unix Epoch time UUIDs are a new format of UUID, proposed in an Internet-Draft under review at
the IETF. While the draft is still going through the IETF process, the version 7 format is not expected to change in any
way that breaks compatibility.

ULIDs and Version 7 UUIDs

Version 7 UUIDs are binary-compatible with ULIDs (universally unique lexicographically-sortable identifiers).

Both use a 48-bit timestamp in milliseconds since the Unix Epoch, filling the rest with random data. Version 7 UUIDs
then add the version and variant bits required by the UUID specification, which reduces the randomness from 80 bits
to 74. Otherwise, they are identical.

You may even convert a version 7 UUID to a ULID. See below for an example.

Version 7 UUIDs solve two problems that have long existed with the use of version 1 UUIDs:

1. Scattered database records

2. Inability to sort by an identifier in a meaningful way (i.e., insert order)

To overcome these issues, we need the ability to generate UUIDs that are monotonically increasing.

Version 6 UUIDs provide an excellent solution for those who need monotonically increasing, sortable UUIDs with
the features of version 1 UUIDs (MAC address and clock sequence), but if those features aren’t necessary for your
application, using a version 6 UUID might be overkill.

Version 7 UUIDs combine random data (like version 4 UUIDs) with a timestamp (in milliseconds since the Unix
Epoch, i.e., 1970-01-01 00:00:00 UTC) to create a monotonically increasing, sortable UUID that doesn’t have any
privacy concerns, since it doesn’t include a MAC address.

For this reason, implementations should use version 7 UUIDs over versions 1 and 6, if possible.

Listing 17: Generate a version 7, Unix Epoch time UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid7();

printf(
"UUID: %s\nVersion: %d\nDate: %s\n",
$uuid->toString(),
$uuid->getFields()->getVersion(),

(continues on next page)

1.3. RFC 4122 UUIDs 17

https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00#section-5.7
https://github.com/ulid/spec
https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/


ramsey/uuid, Release stable

(continued from previous page)

$uuid->getDateTime()->format('r'),
);

This will generate a version 7 UUID and print out its string representation and the time it was created.

It will look something like this:

UUID: 01833ce0-3486-7bfd-84a1-ad157cf64005
Version: 7
Date: Wed, 14 Sep 2022 16:41:10 +0000

To use an existing date and time to generate a version 7 UUID, you may pass a \DateTimeInterface instance to the
uuid7() method.

Listing 18: Generate a version 7 UUID from an existing date and time

use DateTimeImmutable;
use Ramsey\Uuid\Uuid;

$dateTime = new DateTimeImmutable('@281474976710.655');
$uuid = Uuid::uuid7($dateTime);

printf(
"UUID: %s\nVersion: %d\nDate: %s\n",
$uuid->toString(),
$uuid->getFields()->getVersion(),
$uuid->getDateTime()->format('r'),

);

Which will print something like this:

UUID: ffffffff-ffff-7964-a8f6-001336ac20cb
Version: 7
Date: Tue, 02 Aug 10889 05:31:50 +0000

Tip: Version 7 UUIDs generated in ramsey/uuid are instances of UuidV7. Check out the Ramsey\Uuid\Rfc4122\
UuidV7 API documentation to learn more about what you can do with a UuidV7 instance.

Convert a Version 7 UUID to a ULID

As mentioned in the callout above, version 7 UUIDs are binary-compatible with ULIDs. This means you can encode
a version 7 UUID using Crockford’s Base 32 algorithm and it will be a valid ULID, timestamp and all.

Using the third-party library tuupola/base32, here’s how we can encode a version 7 UUID as a ULID. Note that there’s
a little bit of work to perform the conversion, since you’re working with different bases.

Listing 19: Encode a version 7, Unix Epoch time UUID as a ULID

use Ramsey\Uuid\Uuid;
use Tuupola\Base32;

(continues on next page)

18 Chapter 1. Contents

https://github.com/ulid/spec
https://www.crockford.com/base32.html
https://packagist.org/packages/tuupola/base32


ramsey/uuid, Release stable

(continued from previous page)

$crockford = new Base32([
'characters' => Base32::CROCKFORD,
'padding' => false,
'crockford' => true,

]);

$uuid = Uuid::uuid7();

// First, we must pad the 16-byte string to 20 bytes
// for proper conversion without data loss.
$bytes = str_pad($uuid->getBytes(), 20, "\x00", STR_PAD_LEFT);

// Use Crockford's Base 32 encoding algorithm.
$encoded = $crockford->encode($bytes);

// That 20-byte string was encoded to 32 characters to avoid loss
// of data. We must strip off the first 6 characters--which are
// all zeros--to get a valid 26-character ULID string.
$ulid = substr($encoded, 6);

printf("ULID: %s\n", $ulid);

This will print something like this:

ULID: 01GCZ05N3JFRKBRWKNGCQZGP44

Caution: Be aware that all version 7 UUIDs may be converted to ULIDs but not all ULIDs may be converted to
UUIDs.

For that matter, all UUIDs of any version may be encoded as ULIDs, but they will not be monotonically increasing
and sortable unless they are version 7 UUIDs. You will also not be able to extract a meaningful timestamp from
the ULID, unless it was converted from a version 7 UUID.

1.3.8 Version 8: Custom

Note: Version 8, custom UUIDs are a new format of UUID, proposed in an Internet-Draft under review at the IETF.
While the draft is still going through the IETF process, the version 8 format is not expected to change in any way that
breaks compatibility.

Version 8 UUIDs allow applications to create custom UUIDs in an RFC-compatible way. The only requirement is the
version and variant bits must be set according to the UUID specification. The bytes provided may contain any value
according to your application’s needs. Be aware, however, that other applications may not understand the semantics of
the value.

Warning: The bytes should be a 16-byte octet string, an open blob of data that you may fill with 128 bits of
information. However, bits 48 through 51 will be replaced with the UUID version field, and bits 64 and 65 will be
replaced with the UUID variant. You must not rely on these bits for your application needs.

1.3. RFC 4122 UUIDs 19

https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00#section-5.8


ramsey/uuid, Release stable

Listing 20: Generate a version 8, custom UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid8("\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa\xbb\xcc\xdd\xee\xff");

printf(
"UUID: %s\nVersion: %d\n",
$uuid->toString(),
$uuid->getFields()->getVersion()

);

This will generate a version 8 UUID and print out its string representation. It will look something like this:

UUID: 00112233-4455-8677-8899-aabbccddeeff
Version: 8

RFC 4122 defines five versions of UUID, while a new Internet-Draft under review defines three new versions. Each
version has different generation algorithms and properties. Which one you choose depends on your use-case. You can
find out more about their applications on the specific page for that version.

Version 1: Gregorian Time
This version of UUID combines a timestamp, node value (in the form of a MAC address from the local computer’s
network interface), and a clock sequence to ensure uniqueness. For more details, see Version 1: Gregorian Time.

Version 2: DCE Security
This version of UUID is the same as Version 1, except the clock_seq_low field is replaced with a local domain
and the time_low field is replaced with a local identifier. For more details, see Version 2: DCE Security.

Version 3: Name-based (MD5)
This version of UUID hashes together a namespace and a name to create a deterministic UUID. The hashing
algorithm used is MD5. For more details, see Version 3: Name-based (MD5).

Version 4: Random
This version creates a UUID using truly-random or pseudo-random numbers. For more details, see Version 4:
Random.

Version 5: Named-based (SHA-1)
This version of UUID hashes together a namespace and a name to create a deterministic UUID. The hashing
algorithm used is SHA-1. For more details, see Version 5: Name-based (SHA-1).

Version 6: Reordered Time
This version of UUID combines the features of a version 1 UUID with a monotonically increasing UUID. For
more details, see Version 6: Reordered Time.

Version 7: Unix Epoch Time
This version of UUID combines a timestamp–based on milliseconds elapsed since the Unix Epoch–and random
bytes to create a monotonically increasing, sortable UUID without the privacy and entropy concerns associated
with version 1 and version 6 UUIDs. For more details, see Version 7: Unix Epoch Time.

Version 8: Custom
This version of UUID allows applications to generate custom identifiers in an RFC-compatible format. For more
details, see Version 8: Custom.

20 Chapter 1. Contents

https://tools.ietf.org/html/rfc4122
https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00


ramsey/uuid, Release stable

1.4 Nonstandard UUIDs

1.4.1 Version 6: Reordered Time

Attention: This documentation has moved to RFC 4122 UUIDs: Version 6: Reordered Time.

Version 6 UUIDs have been promoted to the Rfc4122 namespace. While still in draft form, the version 6 format is
not expected to change in any way that breaks compatibility.

The Ramsey\Uuid\Nonstandard\UuidV6 class is deprecated in favor of Ramsey\Uuid\Rfc4122\UuidV6.

1.4.2 Globally Unique Identifiers (GUIDs)

Tip: Using these techniques to work with GUIDs is useful if you’re working with identifiers that have been stored in
GUID byte order. For example, this is the case if working with the UNIQUEIDENTIFIER data type in Microsoft SQL
Server. This is a GUID, stored as a 16-byte binary string. If working directly with the bytes, you may use the GUID
functionality in ramsey/uuid to properly handle this data type.

According to the Windows Dev Center article on GUID structure, “GUIDs are the Microsoft implementation of the
distributed computing environment (DCE) universally unique identifier.” For all intents and purposes, a GUID string
representation is identical to that of an RFC 4122 UUID. For historical reasons, the byte order is not.

The .NET Framework documentation explains:

Note that the order of bytes in the returned byte array is different from the string representation of a Guid
value. The order of the beginning four-byte group and the next two two-byte groups is reversed, whereas
the order of the last two-byte group and the closing six-byte group is the same.

This is best explained by example.

Listing 21: Decoding a GUID from byte representation

use Ramsey\Uuid\FeatureSet;
use Ramsey\Uuid\UuidFactory;

// The bytes of a GUID previously stored in some datastore.
$guidBytes = hex2bin('0eab93fc9ec9584b975e9c5e68c53624');

$useGuids = true;
$featureSet = new FeatureSet($useGuids);
$factory = new UuidFactory($featureSet);

$guid = $factory->fromBytes($guidBytes);

printf(
"Class: %s\nGUID: %s\nVersion: %d\nBytes: %s\n",
get_class($guid),
$guid->toString(),
$guid->getFields()->getVersion(),
bin2hex($guid->getBytes())

);

1.4. Nonstandard UUIDs 21

https://docs.microsoft.com/en-us/windows/win32/api/guiddef/ns-guiddef-guid#remarks
https://tools.ietf.org/html/rfc4122
https://docs.microsoft.com/en-us/dotnet/api/system.guid.tobytearray#remarks


ramsey/uuid, Release stable

This transforms the bytes of a GUID, as represented by $guidBytes, into a Ramsey\Uuid\Guid\Guid instance and
prints out some details about it. It looks something like this:

Class: Ramsey\Uuid\Guid\Guid
GUID: fc93ab0e-c99e-4b58-975e-9c5e68c53624
Version: 4
Bytes: 0eab93fc9ec9584b975e9c5e68c53624

Note the difference between the string GUID and the bytes. The bytes are arranged like this:

0e ab 93 fc 9e c9 58 4b 97 5e 9c 5e 68 c5 36 24

In an RFC 4122 UUID, the bytes are stored in the same order as you see presented in the string representation. This is
often called network byte order, or big-endian order. In a GUID, the order of the bytes are reversed in each grouping for
the first 64 bits and stored in little-endian order. The remaining 64 bits are stored in network byte order. See Endianness
to learn more.

Caution: The bytes themselves do not indicate their order. If you decode GUID bytes as a UUID or UUID bytes
as a GUID, you will get the wrong values. However, you can always create a GUID or UUID from the same string
value; the bytes for each will be in a different order, even though the string is the same.

The key is to know ahead of time in what order the bytes are stored. Then, you will be able to decode them using
the correct approach.

Converting GUIDs to UUIDs

Continuing from the example, Decoding a GUID from byte representation, we can take the GUID string representation
and convert it into a standard UUID.

Listing 22: Convert a GUID to a UUID

$uuid = Uuid::fromString($guid->toString());

printf(
"Class: %s\nUUID: %s\nVersion: %d\nBytes: %s\n",
get_class($uuid),
$uuid->toString(),
$uuid->getFields()->getVersion(),
bin2hex($uuid->getBytes())

);

Because the GUID was a version 4, random UUID, this creates an instance of Ramsey\Uuid\Rfc4122\UuidV4 from
the GUID string and prints out a few details about it. It looks something like this:

Class: Ramsey\Uuid\Rfc4122\UuidV4
UUID: fc93ab0e-c99e-4b58-975e-9c5e68c53624
Version: 4
Bytes: fc93ab0ec99e4b58975e9c5e68c53624

Note how the UUID string is identical to the GUID string. However, the byte order is different, since they are in
big-endian order. The bytes are now arranged like this:

22 Chapter 1. Contents

https://tools.ietf.org/html/rfc4122


ramsey/uuid, Release stable

fc 93 ab 0e c9 9e 4b 58 97 5e 9c 5e 68 c5 36 24

Endianness

Big-endian and little-endian refer to the ordering of bytes in a multi-byte number. Big-endian order places the most
significant byte first, followed by the other bytes in descending order. Little-endian order places the least significant
byte first, followed by the other bytes in ascending order.

Take the hexadecimal number 0x1234, for example. In big-endian order, the bytes are stored as 12 34, and in little-
endian order, they are stored as 34 12. In either case, the number is still 0x1234.

Networking protocols usually use big-endian ordering, while computer processor architectures often use little-endian
ordering. The terms originated in Jonathan Swift’s Gulliver’s Travels, where the Lilliputians argue over which end of
a hard-boiled egg is the best end to crack.

1.4.3 Other Nonstandard UUIDs

Sometimes, you might encounter a string that looks like a UUID but doesn’t follow the RFC 4122 specification. Take
this string, for example:

d95959bc-2ff5-43eb-fccd-14883ba8f174

At a glance, this looks like a valid UUID, but the variant bits don’t match RFC 4122. Instead of throwing a validation
exception, ramsey/uuid will assume this is a UUID, since it fits the format and has 128 bits, but it will represent it as a
Ramsey\Uuid\Nonstandard\Uuid .

Listing 23: Create an instance of Nonstandard\Uuid from a non-RFC
4122 UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::fromString('d95959bc-2ff5-43eb-fccd-14883ba8f174');

printf(
"Class: %s\nUUID: %s\nVersion: %d\nVariant: %s\n",
get_class($uuid),
$uuid->toString(),
$uuid->getFields()->getVersion(),
$uuid->getFields()->getVariant()

);

This will create a Nonstandard\Uuid from the given string and print out a few details about it. It will look something
like this:

Class: Ramsey\Uuid\Nonstandard\Uuid
UUID: d95959bc-2ff5-43eb-fccd-14883ba8f174
Version: 0
Variant: 7

Note that the version is 0. Since the variant is 7, and there is no formal specification for this variant of UUID, ram-
sey/uuid has no way of knowing what type of UUID this is.

1.4. Nonstandard UUIDs 23

https://tools.ietf.org/html/rfc4122


ramsey/uuid, Release stable

Outside of RFC 4122, other types of UUIDs are in-use, following rules of their own. Some of these are on their
way to becoming accepted standards, while others have historical reasons for remaining valid today. Still, others are
completely random and do not follow any rules.

For these cases, ramsey/uuid provides a special functionality to handle these alternate, nonstandard forms.

Version 6: Reordered Time
This is a new version of UUID that combines the features of a version 1 UUID with a monotonically increasing
UUID. For more details, see Version 6: Reordered Time.

Globally Unique Identifiers (GUIDs)
A globally unique identifier, or GUID, is often used as a synonym for UUID. A key difference is the order of
the bytes. Any RFC 4122 version UUID may be represented as a GUID. For more details, see Globally Unique
Identifiers (GUIDs).

Other Nonstandard UUIDs
Sometimes, UUID string or byte representations don’t follow RFC 4122. Rather than reject these identifiers, ram-
sey/uuid returns them with the special Nonstandard\Uuid instance type. For more details, see Other Nonstandard
UUIDs.

1.5 Using In a Database

Tip: ramsey/uuid-doctrine allows the use of ramsey/uuid as a Doctrine field type. If you use Doctrine, it’s a great
option for working with UUIDs and databases.

There are several strategies to consider when working with UUIDs in a database. Among these are whether to store
the string representation or bytes and whether the UUID column should be treated as a primary key. We’ll discuss a
few of these approaches here, but the final decision on how to use UUIDs in a database is up to you since your needs
will be different from those of others.

Note: All database code examples in this section assume the use of MariaDB and PHP Data Objects (PDO). If using a
different database engine or connection library, your code will differ, but the general concepts should remain the same.

1.5.1 Storing As a String

Perhaps the easiest way to store a UUID to a database is to create a char(36) column and store the UUID as a string.
When stored as a string, UUIDs require no special treatment in SQL statements or when displaying them.

The primary drawback is the size. At 36 characters, UUIDs can take up a lot of space, and when handling a lot of data,
this can add up.

Listing 24: Create a table with a column for UUIDs

CREATE TABLE `notes` (
`uuid` char(36) NOT NULL,
`notes` text NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Using this database table, we can store the string UUID using code similar to this (assume some of the variables in this
example have been set beforehand):

24 Chapter 1. Contents

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://github.com/ramsey/uuid-doctrine
https://www.doctrine-project.org/projects/doctrine-dbal/en/2.10/reference/types.html
https://mariadb.org
https://www.php.net/pdo


ramsey/uuid, Release stable

Listing 25: Store a string UUID to the uuid column

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

$dbh = new PDO($dsn, $username, $password);

$sth = $dbh->prepare('
INSERT INTO notes (

uuid,
notes

) VALUES (
:uuid,
:notes

)
');

$sth->execute([
':uuid' => $uuid->toString(),
':notes' => $notes,

]);

1.5.2 Storing As Bytes

In the previous example, we saw how to store the string representation of a UUID to a char(36) column. As discussed,
the primary drawback is the size. However, if we store the UUID in byte form, we only need a char(16) column, saving
over half the space.

The primary drawback with this approach is ease-of-use. Since the UUID bytes are stored in the database, querying
and selecting data becomes more difficult.

Listing 26: Create a table with a column for UUID bytes

CREATE TABLE `notes` (
`uuid` char(16) NOT NULL,
`notes` text NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Using this database table, we can store the UUID bytes using code similar to this (again, assume some of the variables
in this example have been set beforehand):

Listing 27: Store UUID bytes to the uuid column

$sth->execute([
':uuid' => $uuid->getBytes(),
':notes' => $notes,

]);

Now, when we SELECT the records from the database, we will need to convert the notes.uuid column to a ramsey/uuid
object, so that we are able to use it.

1.5. Using In a Database 25



ramsey/uuid, Release stable

Listing 28: Covert database UUID bytes to UuidInterface instance

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

$dbh = new PDO($dsn, $username, $password);

$sth = $dbh->prepare('SELECT uuid, notes FROM notes');
$sth->execute();

foreach ($sth->fetchAll() as $record) {
$uuid = Uuid::fromBytes($record['uuid']);

printf(
"UUID: %s\nNotes: %s\n\n",
$uuid->toString(),
$record['notes']

);
}

We’ll also need to query the database using the bytes.

Listing 29: Look-up the record from the database, using the UUID bytes

use Ramsey\Uuid\Uuid;

$uuid = Uuid::fromString('278198d3-fa96-4833-abab-82f9e67f4712');

$dbh = new PDO($dsn, $username, $password);

$sth = $dbh->prepare('
SELECT uuid, notes
FROM notes
WHERE uuid = :uuid

');

$sth->execute([
':uuid' => $uuid->getBytes(),

]);

$record = $sth->fetch();

if ($record) {
$uuid = Uuid::fromBytes($record['uuid']);

printf(
"UUID: %s\nNotes: %s\n\n",
$uuid->toString(),
$record['notes']

);
}

26 Chapter 1. Contents



ramsey/uuid, Release stable

1.5.3 Using As a Primary Key

In the previous examples, we didn’t use the UUID as a primary key, but it’s logical to use the notes.uuid field as a
primary key. There’s nothing wrong with this approach, but there are a couple of points to consider:

• InnoDB stores data in the primary key order

• All the secondary keys also contain the primary key (in InnoDB)

We’ll deal with the first point in the section, Insertion Order and Sorting. For the second point, if you are using the
string version of the UUID (i.e., char(36)), then not only will the primary key be large and take up a lot of space, but
every secondary key that uses that primary key will also be much larger.

For this reason, if you choose to use UUIDs as primary keys, it might be worth the drawbacks to use UUID bytes (i.e.,
char(16)) instead of the string representation (see Storing As Bytes).

Hint: If not using InnoDB with MySQL or MariaDB, consult your database engine documentation to find whether it
also has similar properties that will factor into your use of UUIDs.

1.5.4 Using As a Unique Key

Instead of using UUIDs as a primary key, you may choose to use an AUTO_INCREMENT column with the int unsigned
data type as a primary key, while using a char(36) for UUIDs and setting a UNIQUE KEY on this column. This will
aid in lookups while helping keep your secondary keys small.

Listing 30: Use an auto-incrementing column as primary key, with UUID
as a unique key

CREATE TABLE `notes` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`uuid` char(36) NOT NULL,
`notes` text NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `notes_uuid_uk` (`uuid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

1.5.5 Insertion Order and Sorting

UUID versions 1, 2, 3, 4, and 5 are not monotonically increasing. If using these versions as primary keys, the inserts
will be random, and the data will be scattered on disk (for InnoDB). Over time, as the database size grows, lookups
will become slower and slower.

Tip: See Percona’s “Storing UUID Values in MySQL” post, for more details on the performance of UUIDs as primary
keys.

To minimize these problems, two solutions have been devised:

1. Version 6: Reordered Time UUIDs

2. Version 7: Unix Epoch Time UUIDs

1.5. Using In a Database 27

https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/


ramsey/uuid, Release stable

Note: We previously recommended the use of the timestamp-first COMB or ordered-time codecs to solve these prob-
lems. However, UUID versions 6 and 7 were defined to provide these solutions in a standardized way.

1.6 Customization

1.6.1 Ordered-time Codec

Attention: Version 6, reordered time UUIDs are a new version of UUID that eliminate the need for the ordered-time
codec. If you aren’t currently using the ordered-time codec, and you need time-based, sortable UUIDs, consider
using version 6 UUIDs.

UUIDs arrange their bytes according to the standard recommended by RFC 4122. Unfortunately, this means the bytes
aren’t in an arrangement that supports sorting by creation time or an otherwise incrementing value. The Percona article,
“Storing UUID Values in MySQL,” explains at length the problems this can cause. It also recommends a solution: the
ordered-time UUID.

RFC 4122 version 1, Gregorian time UUIDs rearrange the bytes of the time fields so that the lowest bytes appear first,
the middle bytes are next, and the highest bytes come last. Logical sorting is not possible with this arrangement.

An ordered-time UUID is a version 1 UUID with the time fields arranged in logical order so that the UUIDs can be
sorted by creation time. These UUIDs are monotonically increasing, each one coming after the previously-created one,
in a proper sort order.

Listing 31: Use the ordered-time codec to generate a version 1 UUID

use Ramsey\Uuid\Codec\OrderedTimeCodec;
use Ramsey\Uuid\UuidFactory;

$factory = new UuidFactory();
$codec = new OrderedTimeCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$orderedTimeUuid = $factory->uuid1();

printf(
"UUID: %s\nVersion: %d\nDate: %s\nNode: %s\nBytes: %s\n",
$orderedTimeUuid->toString(),
$orderedTimeUuid->getFields()->getVersion(),
$orderedTimeUuid->getDateTime()->format('r'),
$orderedTimeUuid->getFields()->getNode()->toString(),
bin2hex($orderedTimeUuid->getBytes())

);

This will use the ordered-time codec to generate a version 1 UUID and will print out details about the UUID similar
to these:

UUID: 593200aa-61ae-11ea-bbf2-0242ac130003
Version: 1

(continues on next page)

28 Chapter 1. Contents

https://tools.ietf.org/html/rfc4122
https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/


ramsey/uuid, Release stable

(continued from previous page)

Date: Mon, 09 Mar 2020 02:33:23 +0000
Node: 0242ac130003
Bytes: 11ea61ae593200aabbf20242ac130003

Attention: Only the byte representation is rearranged. The string representation follows the format of a standard
version 1 UUID. This means only the byte representation of an ordered-time codec encoded UUID may be used for
sorting, such as with database results.

To store the byte representation to a database field, see Storing As Bytes.

Hint: If you use this codec and store the bytes of the UUID to the database, as recommended above, you will need to
use this codec to decode the bytes, as well. Otherwise, the UUID string value will be incorrect.

// Using a factory configured with the OrderedTimeCodec, as shown above.
$orderedTimeUuid = $factory->fromBytes($bytes);

1.6.2 Timestamp-first COMB Codec

Attention: Version 7, Unix Epoch time UUIDs are a new version of UUID that eliminate the need for the timestamp-
first COMB codec. If you aren’t currently using the timestamp-first COMB codec, and you need time-based, sortable
UUIDs, consider using version 7 UUIDs.

Version 4, random UUIDs are doubly problematic when it comes to sorting and storing to databases (see Insertion Order
and Sorting), since their values are random, and there is no timestamp associated with them that may be rearranged,
like with the ordered-time codec. In 2002, Jimmy Nilsson recognized this problem with random UUIDs and proposed
a solution he called “COMBs” (see “The Cost of GUIDs as Primary Keys”).

So-called because they combine random bytes with a timestamp, the timestamp-first COMB codec replaces the first 48
bits of a version 4, random UUID with a Unix timestamp and microseconds, creating an identifier that can be sorted
by creation time. These UUIDs are monotonically increasing, each one coming after the previously-created one, in a
proper sort order.

Listing 32: Use the timestamp-first COMB codec to generate a version 4
UUID

use Ramsey\Uuid\Codec\TimestampFirstCombCodec;
use Ramsey\Uuid\Generator\CombGenerator;
use Ramsey\Uuid\UuidFactory;

$factory = new UuidFactory();
$codec = new TimestampFirstCombCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$factory->setRandomGenerator(new CombGenerator(
$factory->getRandomGenerator(),

(continues on next page)

1.6. Customization 29

https://www.informit.com/articles/printerfriendly/25862


ramsey/uuid, Release stable

(continued from previous page)

$factory->getNumberConverter()
));

$timestampFirstComb = $factory->uuid4();

printf(
"UUID: %s\nVersion: %d\nBytes: %s\n",
$timestampFirstComb->toString(),
$timestampFirstComb->getFields()->getVersion(),
bin2hex($timestampFirstComb->getBytes())

);

This will use the timestamp-first COMB codec to generate a version 4 UUID with the timestamp replacing the first 48
bits and will print out details about the UUID similar to these:

UUID: 9009ebcc-cd99-4b5f-90cf-9155607d2de9
Version: 4
Bytes: 9009ebcccd994b5f90cf9155607d2de9

Note that the bytes are in the same order as the string representation. Unlike the ordered-time codec, the timestamp-first
COMB codec affects both the string representation and the byte representation. This means either the string UUID or
the bytes may be stored to a datastore and sorted. To learn more, see Using In a Database.

1.6.3 Using a Custom Calculator

By default, ramsey/uuid uses brick/math as its internal calculator. However, you may change the calculator, if your
needs require something else.

To swap the default calculator with your custom one, first make an adapter that wraps your custom calculator and
implements Ramsey\Uuid\Math\CalculatorInterface. This might look something like this:

Listing 33: Create a custom calculator wrapper that implements Calcula-
torInterface

namespace MyProject;

use Other\OtherCalculator;
use Ramsey\Uuid\Math\CalculatorInterface;
use Ramsey\Uuid\Type\Integer as IntegerObject;
use Ramsey\Uuid\Type\NumberInterface;

class MyUuidCalculator implements CalculatorInterface
{

private $internalCalculator;

public function __construct(OtherCalculator $customCalculator)
{

$this->internalCalculator = $customCalculator;
}

public function add(NumberInterface $augend, NumberInterface ...$addends):␣
→˓NumberInterface

(continues on next page)

30 Chapter 1. Contents

https://github.com/brick/math


ramsey/uuid, Release stable

(continued from previous page)

{
$value = $augend->toString();

foreach ($addends as $addend) {
$value = $this->internalCalculator->plus($value, $addend->toString());

}

return new IntegerObject($value);
}

/* ... Class truncated for brevity ... */

}

The easiest way to use your custom calculator wrapper is to instantiate a new FeatureSet, set the calculator on it, and
pass the FeatureSet into a new UuidFactory. Using the factory, you may then generate and work with UUIDs, using
your custom calculator.

Listing 34: Use your custom calculator wrapper when working with
UUIDs

use MyProject\MyUuidCalculator;
use Other\OtherCalculator;
use Ramsey\Uuid\FeatureSet;
use Ramsey\Uuid\UuidFactory;

$otherCalculator = new OtherCalculator();
$myUuidCalculator = new MyUuidCalculator($otherCalculator);

$featureSet = new FeatureSet();
$featureSet->setCalculator($myUuidCalculator);

$factory = new UuidFactory($featureSet);

$uuid = $factory->uuid1();

1.6.4 Using a Custom Validator

By default, ramsey/uuid validates UUID strings with the lenient validator Ramsey\Uuid\Validator\
GenericValidator. This validator ensures the string is 36 characters, has the dashes in the correct places,
and uses only hexadecimal values. It does not ensure the string is of the RFC 4122 variant or contains a valid version.

The validator Ramsey\Uuid\Rfc4122\Validator validates UUID strings to ensure they match the RFC 4122 variant
and contain a valid version. Since it is not enabled by default, you will need to configure ramsey/uuid to use it, if you
want stricter validation.

Listing 35: Set an alternate validator to use for Uuid::isValid()

use Ramsey\Uuid\Rfc4122\Validator as Rfc4122Validator;
use Ramsey\Uuid\Uuid;
use Ramsey\Uuid\UuidFactory;

(continues on next page)

1.6. Customization 31



ramsey/uuid, Release stable

(continued from previous page)

$factory = new UuidFactory();
$factory->setValidator(new Rfc4122Validator());

Uuid::setFactory($factory);

if (!Uuid::isValid('2bfb5006-087b-9553-5082-e8f39337ad29')) {
echo "This UUID is not valid!\n";

}

Tip: If you want to use your own validation, create a class that implements Ramsey\Uuid\Validator\
ValidatorInterface and use the same method to set your validator on the factory.

1.6.5 Replace the Default Factory

In many of the examples throughout this documentation, we’ve seen how to configure the factory and then use that
factory to generate and work with UUIDs.

For example:

Listing 36: Configure the factory and use it to generate a version 1 UUID

use Ramsey\Uuid\Codec\OrderedTimeCodec;
use Ramsey\Uuid\UuidFactory;

$factory = new UuidFactory();
$codec = new OrderedTimeCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$orderedTimeUuid = $factory->uuid1();

When doing this, the default behavior of ramsey/uuid is left intact. If we call Uuid::uuid1() to generate a version 1
UUID after configuring the factory as shown above, it won’t use OrderedTimeCodec to generate the UUID.

Listing 37: The behavior differs between $factory->uuid1() and
Uuid::uuid1()

$orderedTimeUuid = $factory->uuid1();

printf(
"UUID: %s\nBytes: %s\n\n",
$orderedTimeUuid->toString(),
bin2hex($orderedTimeUuid->getBytes())

);

$uuid = Uuid::uuid1();

printf(
"UUID: %s\nBytes: %s\n\n",
$uuid->toString(),

(continues on next page)

32 Chapter 1. Contents



ramsey/uuid, Release stable

(continued from previous page)

bin2hex($uuid->getBytes())
);

In this example, we print out details for two different UUIDs. The first was generated with the OrderedTimeCodec
using $factory->uuid1(). The second was generated using Uuid::uuid1(). It looks something like this:

UUID: 2ff06620-6251-11ea-9791-0242ac130003
Bytes: 11ea62512ff0662097910242ac130003

UUID: 2ff09730-6251-11ea-ba64-0242ac130003
Bytes: 2ff09730625111eaba640242ac130003

Notice the arrangement of the bytes. The first set of bytes has been rearranged, according to the ordered-time codec
rules, but the second set of bytes remains in the same order as the UUID string.

Configuring the factory does not change the default behavior.

If we want to change the default behavior, we must replace the factory used by the Uuid static methods, and we can do
this using the Uuid::setFactory() static method.

Listing 38: Replace the factory to globally affect Uuid behavior

Uuid::setFactory($factory);

$uuid = Uuid::uuid1();

Now, every time we call Uuid::uuid(), ramsey/uuid will use the factory configured with the OrderedTimeCodec to
generate version 1 UUIDs.

Warning: Calling Uuid::setFactory() to replace the factory will change the behavior of Uuid no matter
where it is used, so keep this in mind when replacing the factory. If you replace the factory deep inside a method
somewhere, any later code that calls a static method on Ramsey\Uuid\Uuid will use the new factory to generate
UUIDs.

ramsey/uuid offers a variety of ways to modify the standard behavior of the library through dependency injection. Using
FeatureSet, UuidFactory, and Uuid::setFactory(), you are able to replace just about any builder, codec, converter,
generator, provider, and more.

Ordered-time Codec
The ordered-time codec exists to rearrange the bytes of a version 1, Gregorian time UUID so that the timestamp
portion of the UUID is monotonically increasing. To learn more, see Ordered-time Codec.

Timestamp-first COMB Codec
The timestamp-first COMB codec replaces part of a version 4, random UUID with a timestamp, so that the UUID
becomes monotonically increasing. To learn more, see Timestamp-first COMB Codec.

Using a Custom Calculator
It’s possible to replace the default calculator ramsey/uuid uses. If your requirements require a different solution
for making calculations, see Using a Custom Calculator.

Using a Custom Validator
If your requirements require a different level of validation or a different UUID format, you may replace the default
validator. See Using a Custom Validator, to learn more.

Replace the Default Factory
Not only are you able to inject alternate builders, codecs, etc. into the factory and use the factory to generate

1.6. Customization 33

https://github.com/ramsey/uuid/blob/4.x/src/FeatureSet.php
https://github.com/ramsey/uuid/blob/4.x/src/UuidFactory.php
https://github.com/ramsey/uuid/tree/4.x/src/Builder
https://github.com/ramsey/uuid/tree/4.x/src/Codec
https://github.com/ramsey/uuid/tree/4.x/src/Converter
https://github.com/ramsey/uuid/tree/4.x/src/Generator
https://github.com/ramsey/uuid/tree/4.x/src/Provider


ramsey/uuid, Release stable

UUIDs, you may also replace the global, static factory used by the static methods on the Uuid class. To find out
how, see Replace the Default Factory.

1.7 Testing With UUIDs

One problem with the use of final is the inability to create a mock object to use in tests. However, the following
techniques should help with testing.

Tip: To learn why ramsey/uuid uses final, take a look at Why does ramsey/uuid use final?.

1.7.1 Inject a UUID of a Specific Type

Let’s say we have a method that uses a type hint for UuidV1.

public function tellTime(UuidV1 $uuid): string
{

return $uuid->getDateTime()->format('Y-m-d H:i:s');
}

Since this method uses UuidV1 as the type hint, we’re not able to pass another object that implements UuidInterface,
and we cannot extend or mock UuidV1, so how do we test this?

One way is to use Uuid::uuid1() to create a regular UuidV1 instance and pass it.

public function testTellTime(): void
{

$uuid = Uuid::uuid1();
$myObj = new MyClass();

$this->assertIsString($myObj->tellTime($uuid));
}

This might satisfy our testing needs if we only want to assert that the method returns a string. If we want to test for a
specific string, we can do that, too, by generating a UUID ahead of time and using it as a known value.

public function testTellTime(): void
{

// We generated this version 1 UUID ahead of time and know the
// exact date and time it contains, so we can use it to test the
// return value of our method.
$uuid = Uuid::fromString('177ef0d8-6630-11ea-b69a-0242ac130003');
$myObj = new MyClass();

$this->assertSame('2020-03-14 20:12:12', $myObj->tellTime($uuid));
}

Note: These examples assume the use of PHPUnit for tests. The concepts will work no matter what testing framework
you use.

34 Chapter 1. Contents

https://en.wikipedia.org/wiki/Mock_object
https://phpunit.de


ramsey/uuid, Release stable

1.7.2 Returning Specific UUIDs From a Static Method

Sometimes, rather than pass UUIDs as method arguments, we might call the static methods on the Uuid class from
inside the method we want to test. This can be tricky to test.

public function tellTime(): string
{

$uuid = Uuid::uuid1();

return $uuid->getDateTime()->format('Y-m-d H:i:s');
}

We can call this in a test and assert that it returns a string, but we can’t return a specific UUID value from the static
method call — or can we?

We can do this by overriding the default factory.

First, we create our own factory class for testing. In this example, we extend UuidFactory, but you may create your own
separate factory class for testing, as long as you implement Ramsey\Uuid\UuidFactoryInterface.

namespace MyPackage;

use Ramsey\Uuid\UuidFactory;
use Ramsey\Uuid\UuidInterface;

class MyTestUuidFactory extends UuidFactory
{

public $uuid1;

public function uuid1($node = null, ?int $clockSeq = null): UuidInterface
{

return $this->uuid1;
}

}

Now, from our tests, we can replace the default factory with our new factory, and we can even change the value returned
by the uuid1() method for our tests.

/**
* @runInSeparateProcess
* @preserveGlobalState disabled
*/
public function testTellTime(): void
{

$factory = new MyTestUuidFactory();
Uuid::setFactory($factory);

$myObj = new MyClass();

$factory->uuid1 = Uuid::fromString('177ef0d8-6630-11ea-b69a-0242ac130003');
$this->assertSame('2020-03-14 20:12:12', $myObj->tellTime());

$factory->uuid1 = Uuid::fromString('13814000-1dd2-11b2-9669-00007ffffffe');
$this->assertSame('1970-01-01 00:00:00', $myObj->tellTime());

}

1.7. Testing With UUIDs 35



ramsey/uuid, Release stable

Attention: The factory is a static property on the Uuid class. By replacing it like this, all uses of the Uuid class after
this point will continue to use the new factory. This is why we must run the test in a separate process. Otherwise,
this could cause other tests to fail.

Running tests in separate processes can significantly slow down your tests, so try to use this technique sparingly,
and if possible, pass your dependencies to your objects, rather than creating (or fetching them) from within. This
makes testing easier.

1.7.3 Mocking UuidInterface

Another technique for testing with UUIDs is to mock UuidInterface.

Consider a method that accepts a UuidInterface.

public function tellTime(UuidInterface $uuid): string
{

return $uuid->getDateTime()->format('Y-m-d H:i:s');
}

We can mock UuidInterface, passing that mocked value into this method. Then, we can make assertions about what
methods were called on the mock object. In the following example test, we don’t care whether the return value matches
an actual date format. What we care about is that the methods on the UuidInterface object were called.

public function testTellTime(): void
{

$dateTime = Mockery::mock(DateTime::class);
$dateTime->expects()->format('Y-m-d H:i:s')->andReturn('a test date');

$uuid = Mockery::mock(UuidInterface::class, [
'getDateTime' => $dateTime,

]);

$myObj = new MyClass();

$this->assertSame('a test date', $myObj->tellTime($uuid));
}

Note: One of my favorite mocking libraries is Mockery, so that’s what I use in these examples. However, other
mocking libraries exist, and PHPUnit provides built-in mocking capabilities.

1.8 Upgrading ramsey/uuid

1.8.1 Version 3 to 4

I’ve made great efforts to ensure that the upgrade experience for most will be seamless and uneventful. However, no
matter the degree to which you use ramsey/uuid (customized or unchanged), there are a number of things to be aware
of as you upgrade your code to use version 4.

36 Chapter 1. Contents

https://github.com/mockery/mockery


ramsey/uuid, Release stable

Tip: These are the changes that are most likely to affect you. For a full list of changes, take a look at the 4.0.0
changelog.

What’s New?

There are a lot of new features in ramsey/uuid! Here are a few of them:

• Support version 6 UUIDs.

• Support version 2 (DCE Security) UUIDs.

• Add classes to represent each version of RFC 4122 UUID. When generating new UUIDs or creating UUIDs from
existing strings, bytes, or integers, if the UUID is an RFC 4122 variant, one of these instances will be returned:

– Rfc4122\UuidV1

– Rfc4122\UuidV2

– Rfc4122\UuidV3

– Rfc4122\UuidV4

– Rfc4122\UuidV5

– Rfc4122\NilUuid

• Add classes to represent version 6 UUIDs, GUIDs, and nonstandard (non-RFC 4122 variants) UUIDs:

– Nonstandard\UuidV6

– Nonstandard\Uuid

– Guid\Guid

• Add Uuid::fromDateTime() to create version 1 UUIDs from instances of DateTimeInterface.

What’s Changed?

Attention: ramsey/uuid version 4 requires PHP 7.2 or later.

Quite a bit has changed, but much remains familiar. Unless you’ve changed the behavior of ramsey/uuid through custom
codecs, providers, generators, etc., the standard functionality and API found in version 3 will not differ much.

Here are the highlights:

• ramsey/uuid now works on 32-bit and 64-bit systems, with no degradation in functionality! All Degraded*
classes are deprecated and no longer used; they’ll go away in ramsey/uuid version 5.

• Pay attention to the return types for the static methods on the Uuid class. They’ve changed slightly, but this won’t
affect you if your type hints use UuidInterface.

• The return types for three methods defined on UuidInterface have changed, breaking backwards compatibility.
Take note and update your code.

• There are a number of deprecations. These shouldn’t affect you now, but please take a look at the recommenda-
tions and update your code soon. These will go away in ramsey/uuid version 5.

1.8. Upgrading ramsey/uuid 37

https://github.com/ramsey/uuid/releases/tag/4.0.0
https://github.com/ramsey/uuid/releases/tag/4.0.0


ramsey/uuid, Release stable

• ramsey/uuid now throws custom exceptions for everything. The exception UnsatisfiedDependencyException no
longer exists.

• If you customize ramsey/uuid at all by implementing the interfaces, take a look at the interface and constructor
changes and update your code.

Tip: If you maintain a public project that uses ramsey/uuid version 3 and you find that your code does not require any
changes to upgrade to version 4, consider using the following version constraint in your project’s composer.json
file:

composer require ramsey/uuid:"^3 || ^4"

This will allow any downstream users of your project who aren’t ready to upgrade to version 4 the ability to continue
using your project while deciding on an appropriate upgrade schedule.

If your downstream users do not specify ramsey/uuid as a dependency, and they use functionality specific to version 3,
they may need to update their own Composer dependencies to use ramsey/uuid ^3 to avoid using version 4.

Uuid Static Methods

All the static methods on the Uuid class continue to work as they did in version 3, with this slight change: they now
return more-specific types, all of which implement the new interface Rfc4122\UuidInterface, which implements
the familiar interface UuidInterface.

If your type hints are for UuidInterface, then you should not require any changes.

Table 2: Return types for Uuid static methods

Method 3.x Returned 4.x Returns
Uuid::uuid1() Uuid Rfc4122\UuidV1
Uuid::uuid3() Uuid Rfc4122\UuidV3
Uuid::uuid4() Uuid Rfc4122\UuidV4
Uuid::uuid5() Uuid Rfc4122\UuidV5

Uuid::fromString(), Uuid::fromBytes(), and Uuid::fromInteger() all return an appropriate more-specific
type, based on the input value. If the input value is a version 1 UUID, for example, the return type will be an Rfc4122\
UuidV1. If the input looks like a UUID or is a 128-bit number, but it doesn’t validate as an RFC 4122 UUID, the return
type will be a Nonstandard\Uuid . These return types implement UuidInterface. If using this as a type hint, you
shouldn’t need to make any changes.

Changed Return Types

The following UuidInterface method return types have changed in version 4 and you will need to update your code,
if you use these methods.

Table 3: Changed UuidInterface method return types

Method 3.x Returned 4.x Returns
UuidInterface::getFields() array Rfc4122\FieldsInterface
UuidInterface::getHex() string Type\Hexadecimal
UuidInterface::getInteger() mixed1 Type\Integer

38 Chapter 1. Contents

https://en.wikipedia.org/wiki/Downstream_(software_development)


ramsey/uuid, Release stable

In version 3, the following Uuid methods return int, string, or Moontoast\Math\BigNumber, depending on the
environment. In version 4, they all return numeric string values for the sake of consistency. These methods are also
deprecated and will be removed in version 5.

• getClockSeqHiAndReserved()

• getClockSeqLow()

• getClockSequence()

• getLeastSignificantBits()

• getMostSignificantBits()

• getNode()

• getTimeHiAndVersion()

• getTimeLow()

• getTimeMid()

• getTimestamp()

Deprecations

UuidInterface

The following UuidInterface methods are deprecated, but upgrading to version 4 should not cause any problems if
using these methods. You are encouraged to update your code according to the recommendations, though, since these
methods will go away in version 5.

Table 4: Deprecated UuidInterface methods

Deprecated Method Update To
getDateTime() Use getDateTime() on UuidV1, UuidV2, or UuidV6
getClockSeqHiAndReservedHex()getFields()->getClockSeqHiAndReserved()->toString()
getClockSeqLowHex() getFields()->getClockSeqLow()->toString()
getClockSequenceHex() getFields()->getClockSeq()->toString()
getFieldsHex() getFields()2

getLeastSignificantBitsHex()substr($uuid->getHex()->toString(), 0, 16)
getMostSignificantBitsHex()substr($uuid->getHex()->toString(), 16)
getNodeHex() getFields()->getNode()->toString()
getNumberConverter() This method has no replacement; plan accordingly.
getTimeHiAndVersionHex() getFields()->getTimeHiAndVersion()->toString()
getTimeLowHex() getFields()->getTimeLow()->toString()
getTimeMidHex() getFields()->getTimeMid()->toString()
getTimestampHex() getFields()->getTimestamp()->toString()
getUrn() Ramsey\Uuid\Rfc4122\UuidInterface::getUrn
getVariant() getFields()->getVariant()
getVersion() getFields()->getVersion()

1 This mixed return type could have been an int, string, or Moontoast\Math\BigNumber. In version 4, ramsey/uuid cleans this up for the sake
of consistency.

2 The getFields() method returns a Type\Hexadecimal instance; you will need to construct an array if you wish to match the return value
of the deprecated getFieldsHex() method.

1.8. Upgrading ramsey/uuid 39



ramsey/uuid, Release stable

Uuid

Uuid as an instantiable class is deprecated. In ramsey/uuid version 5, its constructor will be private, and the class
will be final. For more information, see Why does ramsey/uuid use final?

Note: Uuid is being replaced by more-specific concrete classes, such as:

• Rfc4122\UuidV1

• Rfc4122\UuidV3

• Rfc4122\UuidV4

• Rfc4122\UuidV5

• Nonstandard\Uuid

However, the Uuid class isn’t going away. It will still hold common constants and static methods.

• Uuid::UUID_TYPE_IDENTIFIER is deprecated. Use Uuid::UUID_TYPE_DCE_SECURITY instead.

• Uuid::VALID_PATTERN is deprecated. Use the following instead:

use Ramsey\Uuid\Validator\GenericValidator;
use Ramsey\Uuid\Rfc4122\Validator as Rfc4122Validator;

$genericPattern = (new GenericValidator())->getPattern();
$rfc4122Pattern = (new Rfc4122Validator())->getPattern();

The following Uuid methods are deprecated. If using these methods, you shouldn’t have any problems on version 4,
but you are encouraged to update your code, since they will go away in version 5.

• getClockSeqHiAndReserved()

• getClockSeqLow()

• getClockSequence()

• getLeastSignificantBits()

• getMostSignificantBits()

• getNode()

• getTimeHiAndVersion()

• getTimeLow()

• getTimeMid()

• getTimestamp()

Hint: There are no direct replacements for these methods. In ramsey/uuid version 3, they returned int or Moon-
toast\Math\BigNumber values, depending on the environment. To update your code, you should use the recommended
alternates listed in Deprecations: UuidInterface, combined with the arbitrary-precision mathematics library of your
choice (e.g., brick/math, gmp, bcmath, etc.).

40 Chapter 1. Contents

https://github.com/brick/math
https://www.php.net/gmp
https://www.php.net/bcmath


ramsey/uuid, Release stable

Listing 39: Using brick/math to convert a node to a string integer

use Brick\Math\BigInteger;

$node = BigInteger::fromBase($uuid->getFields()->getNode()->toString(), 16);

Interface Changes

For those who customize ramsey/uuid by implementing the interfaces provided, there are a few breaking changes to
note.

Hint: Most existing methods on interfaces have type hints added to them. If you implement any interfaces, please be
aware of this and update your classes.

UuidInterface

Method Description
__toString() New method; returns string
getDateTime() Deprecated; now returns DateTimeInterface
getFields() Used to return array; now returns Rfc4122\FieldsInterface
getHex() Used to return string; now returns Type\Hexadecimal
getInteger() New method; returns Type\Integer

UuidFactoryInterface

Method Description
uuid2() New method; returns Rfc4122\UuidV2
uuid6() New method; returns Nonstandard\UuidV6
fromDateTime() New method; returns UuidInterface
fromInteger() Changed to accept only strings
getValidator() New method; returns UuidInterface

Builder\UuidBuilderInterface

Method Description
build() The second parameter used to accept array $fields; now accepts string $bytes

1.8. Upgrading ramsey/uuid 41

https://www.php.net/datetimeinterface


ramsey/uuid, Release stable

Converter\TimeConverterInterface

Method Description
calculateTime() Used to return string[]; now returns Type\Hexadecimal
convertTime() New method; returns Type\Time

Provider\TimeProviderInterface

Method Description
currentTime() Method removed from interface; use getTime() instead
getTime() New method; returns Type\Time

Provider\NodeProviderInterface

Method Description
getNode() Used to return string|false|null; now returns Type\Hexadecimal

Constructor Changes

There are a handful of constructor changes that might affect your use of ramsey/uuid, especially if you customize the
library.

Uuid

The constructor for Ramsey\Uuid\Uuid is deprecated. However, there are a few changes to it that might affect your
use of this class.

The first constructor parameter used to be array $fields and is now Rfc4122\FieldsInterface $fields.

Converter\TimeConverterInterface $timeConverter is required as a new fourth parameter.

Builder\DefaultUuidBuilder

While Builder\DefaultUuidBuilder is deprecated, it now inherits from Rfc4122\UuidBuilder, which requires
Converter\TimeConverterInterface $timeConverter as its second constructor argument.

42 Chapter 1. Contents



ramsey/uuid, Release stable

Provider\Node\FallbackNodeProvider

Provider\Node\FallbackNodeProvider now requires iterable<Ramsey\Uuid\Provider\
NodeProviderInterface> as its constructor parameter.

use MyPackage\MyCustomNodeProvider;
use Ramsey\Uuid\Provider\Node\FallbackNodeProvider;
use Ramsey\Uuid\Provider\Node\RandomNodeProvider;
use Ramsey\Uuid\Provider\Node\SystemNodeProvider;

$nodeProviders = [];
$nodeProviders[] = new MyCustomNodeProvider();
$nodeProviders[] = new SystemNodeProvider();
$nodeProviders[] = new RandomNodeProvider();

$provider = new FallbackNodeProvider($nodeProviders);

Provider\Time\FixedTimeProvider

The constructor for Provider\Time\FixedTimeProvider no longer accepts an array. It accepts Type\Time instances.

1.8.2 Version 2 to 3

While we have made significant internal changes to the library, we have made every effort to ensure a seamless upgrade
path from the 2.x series of this library to 3.x.

One major breaking change is the transition from the Rhumsaa root namespace to Ramsey. In most cases, all you will
need is to change the namespace to Ramsey in your code, and everything will “just work.”

Note: For more details on the namespace change, including reasons for the change, read the blog post “Introducing
ramsey/uuid”.

Here are full details on the breaking changes to the public API of this library:

1. All namespace references of Rhumsaa have changed to Ramsey. Simply change the namespace to Ramsey in
your code and everything should work.

2. The console application has moved to ramsey/uuid-console. If using the console functionality, use Composer to
require ramsey/uuid-console.

3. The Doctrine field type mapping has moved to ramsey/uuid-doctrine. If using the Doctrine functionality, use
Composer to require ramsey/uuid-doctrine.

1.8. Upgrading ramsey/uuid 43

https://benramsey.com/blog/2016/04/ramsey-uuid/
https://benramsey.com/blog/2016/04/ramsey-uuid/
https://packagist.org/packages/ramsey/uuid-console
https://packagist.org/packages/ramsey/uuid-doctrine


ramsey/uuid, Release stable

1.9 Frequently Asked Questions (FAQs)

• How do I fix “rhumsaa/uuid is abandoned” messages?

• Why does ramsey/uuid use final?

1.9.1 How do I fix “rhumsaa/uuid is abandoned” messages?

When installing your project’s dependencies using Composer, you might see the following message:

Package rhumsaa/uuid is abandoned; you should avoid using it. Use
ramsey/uuid instead.

Don’t panic. Simply execute the following commands with Composer:

composer remove rhumsaa/uuid
composer require ramsey/uuid=^2.9

After doing so, you will have the latest ramsey/uuid package in the 2.x series, and there will be no need to modify any
code; the namespace in the 2.x series is still Rhumsaa.

1.9.2 Why does ramsey/uuid use final?

You might notice that many of the concrete classes returned in ramsey/uuid are marked as final. There are specific
reasons for this choice, and I will offer a few solutions for those looking to extend or mock the classes for testing
purposes.

But Why?

First, let’s take a look at why ramsey/uuid uses final.

UUIDs are defined by a set of rules — published as RFC 4122 — and those rules shouldn’t change. If they do, then
it’s no longer a UUID — at least not as defined by RFC 4122.

As an example, let’s think about Rfc4122\UuidV1. If our application wants to do something special with this type,
it might use the instanceof operator to check that a variable is a UuidV1, or it might use a type hint on a method
argument. If a third-party library passes a UUID object to us that extends UuidV1 but overrides some very impor-
tant internal logic, then we may no longer have a version 1 UUID. Perhaps we can all be adults and play nicely, but
ramsey/uuid cannot make any guarantees for any subclasses of UuidV1.

However, ramsey/uuid can make guarantees about classes that implement UuidInterface or Rfc4122\
UuidInterface.

So, if we’re working with an instance of a class that is marked final, we can guarantee that the rules for the creation
of that object will not change, even if a third-party library passes us an instance of the same class.

This is the reason why ramsey/uuid specifies certain argument and return types that are marked final. Since these
are final, ramsey/uuid is able to guarantee the type of data these value objects contain. Type\Integer should never
contain any characters other than numeral digits, and Type\Hexadecimal should never contain any characters other
than hexadecimal digits. If other libraries could extend these and return them from UUID instances, then ramsey/uuid
cannot guarantee their values.

44 Chapter 1. Contents

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122


ramsey/uuid, Release stable

This is very similar to using strict types with int, float, or bool. These types cannot change, so think of final classes
in ramsey/uuid as types that cannot change.

Overriding Behavior

You may override the behavior of ramsey/uuid as much as you want. Despite the use of final, the library is very
flexible. Take a look at the myriad opportunities to change how the library works:

• Generating a Random Node

• Timestamp-first COMB Codec

• Replace the Default Factory

• And more. . .

ramsey/uuid is able to provide this flexibility through the use of interfaces, factories, and dependency injection.

At the same time, ramsey/uuid is able to guarantee that neither a UuidV1 nor a UuidV4 nor an Integer nor a Time,
etc. will ever change because of downstream code.

UUIDs have specific rules that make them practically unique. ramsey/uuid ensures that other code cannot change
this expectation while allowing your code and third-party libraries to change how UUIDs are generated and to return
different types of UUIDs not specified by RFC 4122.

Testing With UUIDs

Sometimes, the use of final can throw a wrench in our ability to write tests, but it doesn’t have to be that way. To
learn a few techniques for using ramsey/uuid instances in your tests, take a look at Testing With UUIDs.

1.10 Reference

1.10.1 Uuid

RamseyUuidUuid provides static methods for the most common functionality for generating and working with UUIDs.
It also provides constants used throughout the ramsey/uuid library.

class Ramsey\Uuid\Uuid

constant UUID_TYPE_TIME

Version 1: Gregorian Time UUID.

constant UUID_TYPE_DCE_SECURITY

Version 2: DCE Security UUID.

constant UUID_TYPE_HASH_MD5

Version 3: Name-based (MD5) UUID.

constant UUID_TYPE_RANDOM

Version 4: Random UUID.

constant UUID_TYPE_HASH_SHA1

Version 5: Name-based (SHA-1) UUID.

constant UUID_TYPE_REORDERED_TIME

Version 6: Reordered Time UUID.

1.10. Reference 45

https://www.php.net/interfaces
https://en.wikipedia.org/wiki/Factory_%28object-oriented_programming%29
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Downstream_(software_development)
https://tools.ietf.org/html/rfc4122


ramsey/uuid, Release stable

constant UUID_TYPE_PEABODY

Deprecated. Use Uuid::UUID_TYPE_REORDERED_TIME instead.

constant UUID_TYPE_UNIX_TIME

Version 7: Unix Epoch Time UUID.

constant NAMESPACE_DNS

The name string is a fully-qualified domain name.

constant NAMESPACE_URL

The name string is a URL.

constant NAMESPACE_OID

The name string is an ISO object identifier (OID).

constant NAMESPACE_X500

The name string is an X.500 DN in DER or a text output format.

constant NIL

The nil UUID is a special form of UUID that is specified to have all 128 bits set to zero.

constant DCE_DOMAIN_PERSON

DCE Security principal (person) domain.

constant DCE_DOMAIN_GROUP

DCE Security group domain.

constant DCE_DOMAIN_ORG

DCE Security organization domain.

constant RESERVED_NCS

Variant identifier: reserved, NCS backward compatibility.

constant RFC_4122

Variant identifier: the UUID layout specified in RFC 4122.

constant RESERVED_MICROSOFT

Variant identifier: reserved, Microsoft Corporation backward compatibility.

constant RESERVED_FUTURE

Variant identifier: reserved for future definition.

static uuid1([$node[, $clockSeq ]])
Generates a version 1, Gregorian time UUID. See Version 1: Gregorian Time.

Parameters

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 1 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV1

46 Chapter 1. Contents

http://www.oid-info.com
https://en.wikipedia.org/wiki/X.500
https://en.wikipedia.org/wiki/Distinguished_Name
https://www.itu.int/rec/T-REC-X.690/


ramsey/uuid, Release stable

static uuid2($localDomain[, $localIdentifier[, $node[, $clockSeq ]]])
Generates a version 2, DCE Security UUID. See Version 2: DCE Security.

Parameters

• $localDomain (int) – The local domain to use (one of Uuid::DCE_DOMAIN_PERSON,
Uuid::DCE_DOMAIN_GROUP, or Uuid::DCE_DOMAIN_ORG)

• $localIdentifier (Ramsey\Uuid\Type\Integer|null) – A local identifier for the
domain (defaults to system UID or GID for person or group)

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 2 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV2

static uuid3($ns, $name)
Generates a version 3, name-based (MD5) UUID. See Version 3: Name-based (MD5).

Parameters

• $ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

• $name (string) – The name from which to generate an identifier

Returns
A version 3 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV3

static uuid4

Generates a version 4, random UUID. See Version 4: Random.

Returns
A version 4 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV4

static uuid5($ns, $name)
Generates a version 5, name-based (SHA-1) UUID. See Version 5: Name-based (SHA-1).

Parameters

• $ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

• $name (string) – The name from which to generate an identifier

Returns
A version 5 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV5

static uuid6([$node[, $clockSeq ]])
Generates a version 6, reordered time UUID. See Version 6: Reordered Time.

Parameters

1.10. Reference 47



ramsey/uuid, Release stable

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 6 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV6

static uuid7([$dateTime])
Generates a version 7, Unix Epoch time UUID. See Version 7: Unix Epoch Time.

Parameters

• $dateTime (DateTimeInterface|null) – The date from which to create the UUID in-
stance

Returns
A version 7 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV7

static fromString($uuid)
Creates an instance of UuidInterface from the string standard representation.

Parameters

• $uuid (string) – The string standard representation of a UUID

Return type
Ramsey\Uuid\UuidInterface

static fromBytes($bytes)
Creates an instance of UuidInterface from a 16-byte string.

Parameters

• $bytes (string) – A 16-byte binary string representation of a UUID

Return type
Ramsey\Uuid\UuidInterface

static fromInteger($integer)
Creates an instance of UuidInterface from a 128-bit string integer.

Parameters

• $integer (string) – A 128-bit string integer representation of a UUID

Return type
Ramsey\Uuid\UuidInterface

static fromDateTime($dateTime[, $node[, $clockSeq ]])
Creates a version 1 UUID instance from a DateTimeInterface instance.

Parameters

• $dateTime (DateTimeInterface) – The date from which to create the UUID instance

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

48 Chapter 1. Contents

https://www.php.net/datetimeinterface


ramsey/uuid, Release stable

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 1 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV1

static isValid($uuid)
Validates the string standard representation of a UUID.

Parameters

• $uuid (string) – The string standard representation of a UUID

Return type
bool

static setFactory($factory)
Sets the factory used to create UUIDs.

Parameters

• $factory (Ramsey\Uuid\UuidFactoryInterface) – A UUID factory to use for all
UUID generation

Return type
void

1.10.2 UuidInterface

interface Ramsey\Uuid\UuidInterface

Represents a UUID.

compareTo($other)

Parameters

• $other (Ramsey\Uuid\UuidInterface) – The UUID to compare

Returns
Returns -1, 0, or 1 if the UUID is less than, equal to, or greater than the other UUID.

Return type
int

equals($other)

Parameters

• $other (object|null) – An object to test for equality with this UUID.

Returns
Returns true if the UUID is equal to the provided object.

Return type
bool

getBytes()

Returns
A binary string representation of the UUID.

1.10. Reference 49



ramsey/uuid, Release stable

Return type
string

getFields()

Returns
The fields that comprise this UUID.

Return type
Ramsey\Uuid\Fields\FieldsInterface

getHex()

Returns
The hexadecimal representation of the UUID.

Return type
Ramsey\Uuid\Type\Hexadecimal

getInteger()

Returns
The integer representation of the UUID.

Return type
Ramsey\Uuid\Type\Integer

getUrn()

Returns
The string standard representation of the UUID as a URN.

Return type
string

toString()

Returns
The string standard representation of the UUID.

Return type
string

__toString()

Returns
The string standard representation of the UUID.

Return type
string

1.10.3 Fields\FieldsInterface

interface Ramsey\Uuid\Fields\FieldsInterface

Represents the fields of a UUID.

getBytes()

Returns
The bytes that comprise these fields.

50 Chapter 1. Contents

https://tools.ietf.org/html/rfc8141


ramsey/uuid, Release stable

Return type
string

1.10.4 Rfc4122\UuidInterface

interface Ramsey\Uuid\Rfc4122\UuidInterface

Implements Ramsey\Uuid\UuidInterface.

Rfc4122UuidInterface represents an RFC 4122 UUID. In addition to the methods defined on the interface, this
interface additionally defines the following methods.

getFields()

Returns
The fields that comprise this UUID.

Return type
Ramsey\Uuid\Rfc4122\FieldsInterface

1.10.5 Rfc4122\FieldsInterface

interface Ramsey\Uuid\Rfc4122\FieldsInterface

Implements Ramsey\Uuid\Fields\FieldsInterface.

Rfc4122FieldsInterface represents the fields of an RFC 4122 UUID. In addition to the methods defined on the
interface, this class additionally defines the following methods.

getClockSeq()

Returns
The full 16-bit clock sequence, with the variant bits (two most significant bits) masked out.

Return type
Ramsey\Uuid\Type\Hexadecimal

getClockSeqHiAndReserved()

Returns
The high field of the clock sequence multiplexed with the variant.

Return type
Ramsey\Uuid\Type\Hexadecimal

getClockSeqLow()

Returns
The low field of the clock sequence.

Return type
Ramsey\Uuid\Type\Hexadecimal

getNode()

Returns
The node field.

Return type
Ramsey\Uuid\Type\Hexadecimal

1.10. Reference 51



ramsey/uuid, Release stable

getTimeHiAndVersion()

Returns
The high field of the timestamp multiplexed with the version.

Return type
Ramsey\Uuid\Type\Hexadecimal

getTimeLow()

Returns
The low field of the timestamp.

Return type
Ramsey\Uuid\Type\Hexadecimal

getTimeMid()

Returns
The middle field of the timestamp.

Return type
Ramsey\Uuid\Type\Hexadecimal

getTimestamp()

Returns
The full 60-bit timestamp, without the version.

Return type
Ramsey\Uuid\Type\Hexadecimal

getVariant()

Returns the variant, which, for RFC 4122 variant UUIDs, should always be the value 2.

Returns
The UUID variant.

Return type
int

getVersion()

Returns
The UUID version.

Return type
int

isNil()

A nil UUID is a special type of UUID with all 128 bits set to zero. Its string standard representation is
always 00000000-0000-0000-0000-000000000000.

Returns
True if this UUID represents a nil UUID.

Return type
bool

52 Chapter 1. Contents



ramsey/uuid, Release stable

1.10.6 Rfc4122\UuidV1

class Ramsey\Uuid\Rfc4122\UuidV1

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV1 represents a version 1, Gregorian time UUID. In addition to providing the methods defined on the
interface, this class additionally provides the following methods.

getDateTime()

Returns
A date object representing the timestamp associated with the UUID.

Return type
\DateTimeInterface

1.10.7 Rfc4122\UuidV2

class Ramsey\Uuid\Rfc4122\UuidV2

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV2 represents a version 2, DCE Security UUID. In addition to providing the methods defined on the inter-
face, this class additionally provides the following methods.

getDateTime()

Returns a DateTimeInterface instance representing the timestamp associated with the UUID

Caution: It is important to note that version 2 UUIDs suffer from some loss of timestamp precision.
See Lossy Timestamps to learn more.

Returns
A date object representing the timestamp associated with the UUID

Return type
\DateTimeInterface

getLocalDomain()

Returns
The local domain identifier for this UUID, which is one of Ramsey\Uuid\
Uuid::DCE_DOMAIN_PERSON, Ramsey\Uuid\Uuid::DCE_DOMAIN_GROUP, or Ramsey\
Uuid\Uuid::DCE_DOMAIN_ORG

Return type
int

getLocalDomainName()

Returns
A string name associated with the local domain identifier (one of “person,” “group,” or “org”)

Return type
string

1.10. Reference 53

https://www.php.net/datetimeinterface


ramsey/uuid, Release stable

getLocalIdentifier()

Returns
The local identifier used when creating this UUID

Return type
Ramsey\Uuid\Type\Integer

1.10.8 Rfc4122\UuidV3

class Ramsey\Uuid\Rfc4122\UuidV3

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV3 represents a version 3, name-based (MD5) UUID.

1.10.9 Rfc4122\UuidV4

class Ramsey\Uuid\Rfc4122\UuidV4

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV4 represents a version 4, random UUID.

1.10.10 Rfc4122\UuidV5

class Ramsey\Uuid\Rfc4122\UuidV5

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV5 represents a version 5, name-based (SHA-1) UUID.

1.10.11 Rfc4122\UuidV6

class Ramsey\Uuid\Rfc4122\UuidV6

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV6 represents a version 6, reordered time UUID. In addition to providing the methods defined on the inter-
face, this class additionally provides the following methods.

getDateTime()

Returns
A date object representing the timestamp associated with the UUID

Return type
\DateTimeInterface

toUuidV1()

Returns
A version 1 UUID, converted from this version 6 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV1

54 Chapter 1. Contents



ramsey/uuid, Release stable

static fromUuidV1

Parameters

• $uuidV1 (Ramsey\Uuid\Rfc4122\UuidV1) – A version 1 UUID

Returns
A version 6 UUID, converted from the given version 1 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV6

1.10.12 Rfc4122\UuidV7

class Ramsey\Uuid\Rfc4122\UuidV7

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV7 represents a version 7, Unix Epoch time UUID. In addition to providing the methods defined on the
interface, this class additionally provides the following methods.

getDateTime()

Returns
A date object representing the timestamp associated with the UUID.

Return type
\DateTimeInterface

1.10.13 Rfc4122\UuidV8

class Ramsey\Uuid\Rfc4122\UuidV8

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV8 represents a version 8, custom UUID.

1.10.14 Guid\Fields

class Ramsey\Uuid\Guid\Fields

Implements Ramsey\Uuid\Rfc4122\FieldsInterface.

GuidFields represents the fields of a GUID.

1.10.15 Guid\Guid

class Ramsey\Uuid\Guid\Guid

Implements Ramsey\Uuid\UuidInterface.

Guid represents a Globally Unique Identifiers (GUIDs). In addition to providing the methods defined on the
interface, this class additionally provides the following methods.

getFields()

Returns
The fields that comprise this GUID.

1.10. Reference 55



ramsey/uuid, Release stable

Return type
Ramsey\Uuid\Guid\Fields

1.10.16 Nonstandard\Fields

class Ramsey\Uuid\Nonstandard\Fields

Implements Ramsey\Uuid\Rfc4122\FieldsInterface.

NonstandardFields represents the fields of a nonstandard UUID.

1.10.17 Nonstandard\Uuid

class Ramsey\Uuid\Nonstandard\Uuid

Implements Ramsey\Uuid\UuidInterface.

NonstandardUuid represents Other Nonstandard UUIDs. In addition to providing the methods defined on the
interface, this class additionally provides the following methods.

getFields()

Returns
The fields that comprise this UUID

Return type
Ramsey\Uuid\Nonstandard\Fields

1.10.18 Nonstandard\UuidV6

class Ramsey\Uuid\Nonstandard\UuidV6

Attention: Ramsey\Uuid\Nonstandard\UuidV6 is deprecated in favor of Ramsey\Uuid\Rfc4122\
UuidV6. Please migrate any code using Nonstandard\UuidV6 to Rfc4122\UuidV6. The interface is oth-
erwise identical.

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV6 represents a version 6, reordered time UUID. In addition to providing the methods defined on the inter-
face, this class additionally provides the following methods.

getDateTime()

Returns
A date object representing the timestamp associated with the UUID

Return type
\DateTimeInterface

toUuidV1()

Returns
A version 1 UUID, converted from this version 6 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV1

56 Chapter 1. Contents



ramsey/uuid, Release stable

static fromUuidV1

Parameters

• $uuidV1 (Ramsey\Uuid\Rfc4122\UuidV1) – A version 1 UUID

Returns
A version 6 UUID, converted from the given version 1 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV6

1.10.19 UuidFactoryInterface

interface Ramsey\Uuid\UuidFactoryInterface

Represents a UUID factory.

getValidator()

Return type
Ramsey\Uuid\Validator\ValidatorInterface

uuid1([$node[, $clockSeq ]])
Generates a version 1, Gregorian time UUID. See Version 1: Gregorian Time.

Parameters

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 1 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV1

uuid2($localDomain[, $localIdentifier[, $node[, $clockSeq ]]])
Generates a version 2, DCE Security UUID. See Version 2: DCE Security.

Parameters

• $localDomain (int) – The local domain to use (one of Uuid::DCE_DOMAIN_PERSON,
Uuid::DCE_DOMAIN_GROUP, or Uuid::DCE_DOMAIN_ORG)

• $localIdentifier (Ramsey\Uuid\Type\Integer|null) – A local identifier for the
domain (defaults to system UID or GID for person or group)

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 2 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV2

1.10. Reference 57



ramsey/uuid, Release stable

uuid3($ns, $name)
Generates a version 3, name-based (MD5) UUID. See Version 3: Name-based (MD5).

Parameters

• $ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

• $name (string) – The name from which to generate an identifier

Returns
A version 3 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV3

uuid4()

Generates a version 4, random UUID. See Version 4: Random.

Returns
A version 4 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV4

uuid5($ns, $name)
Generates a version 5, name-based (SHA-1) UUID. See Version 5: Name-based (SHA-1).

Parameters

• $ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

• $name (string) – The name from which to generate an identifier

Returns
A version 5 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV5

uuid6([$node[, $clockSeq ]])
Generates a version 6, reordered time UUID. See Version 6: Reordered Time.

Parameters

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 6 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV6

fromString($uuid)
Creates an instance of UuidInterface from the string standard representation.

Parameters

• $uuid (string) – The string standard representation of a UUID

Return type
Ramsey\Uuid\UuidInterface

58 Chapter 1. Contents



ramsey/uuid, Release stable

fromBytes($bytes)
Creates an instance of UuidInterface from a 16-byte string.

Parameters

• $bytes (string) – A 16-byte binary string representation of a UUID

Return type
Ramsey\Uuid\UuidInterface

fromInteger($integer)
Creates an instance of UuidInterface from a 128-bit string integer.

Parameters

• $integer (string) – A 128-bit string integer representation of a UUID

Return type
Ramsey\Uuid\UuidInterface

fromDateTime($dateTime[, $node[, $clockSeq ]])
Creates a version 1 UUID instance from a DateTimeInterface instance.

Parameters

• $dateTime (DateTimeInterface) – The date from which to create the UUID instance

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to
use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A version 1 UUID

Return type
Ramsey\Uuid\Rfc4122\UuidV1

1.10.20 Types

class Ramsey\Uuid\Type\TypeInterface

Implements JsonSerializable and Serializable.

TypeInterface ensures consistency in typed values returned by ramsey/uuid.

toString()

Return type
string

__toString()

Return type
string

class Ramsey\Uuid\Type\NumberInterface

Implements Ramsey\Uuid\Type\TypeInterface.

NumberInterface ensures consistency in numeric values returned by ramsey/uuid.

1.10. Reference 59

https://www.php.net/datetimeinterface
https://www.php.net/jsonserializable
https://www.php.net/serializable


ramsey/uuid, Release stable

isNegative()

Returns
True if this number is less than zero, false otherwise.

Return type
bool

class Ramsey\Uuid\Type\Decimal

Implements Ramsey\Uuid\Type\NumberInterface.

A value object representing a decimal, for type-safety purposes, to ensure that decimals returned from ram-
sey/uuid methods as strings are truly decimals and not some other kind of string.

To support values as true decimals and not as floats or doubles, we store the decimals as strings.

class Ramsey\Uuid\Type\Hexadecimal

Implements Ramsey\Uuid\Type\TypeInterface.

A value object representing a hexadecimal number, for type-safety purposes, to ensure that hexadecimal numbers
returned from ramsey/uuid methods as strings are truly hexadecimal and not some other kind of string.

class Ramsey\Uuid\Type\Integer

Implements Ramsey\Uuid\Type\NumberInterface.

A value object representing an integer, for type-safety purposes, to ensure that integers returned from ramsey/uuid
methods as strings are truly integers and not some other kind of string.

To support large integers beyond PHP_INT_MAX and PHP_INT_MIN on both 64-bit and 32-bit systems, we store
the integers as strings.

class Ramsey\Uuid\Type\Time

Implements Ramsey\Uuid\Type\TypeInterface.

A value object representing a timestamp, for type-safety purposes, to ensure that timestamps used by ramsey/uuid
are truly timestamp integers and not some other kind of string or integer.

getSeconds()

Return type
Ramsey\Uuid\Type\Integer

getMicroseconds()

Return type
Ramsey\Uuid\Type\Integer

1.10.21 Exceptions

All exceptions in the Ramsey\Uuid namespace implement Ramsey\Uuid\Exception\UuidExceptionInterface.
This provides a base type you may use to catch any and all exceptions that originate from this library.

interface Ramsey\Uuid\Exception\UuidExceptionInterface

This is the interface all exceptions in ramsey/uuid must implement.

exception Ramsey\Uuid\Exception\BuilderNotFoundException

Extends RuntimeException.

Thrown to indicate that no suitable UUID builder could be found.

60 Chapter 1. Contents

https://www.php.net/runtimeexception


ramsey/uuid, Release stable

exception Ramsey\Uuid\Exception\DateTimeException

Extends RuntimeException.

Thrown to indicate that the PHP DateTime extension encountered an exception or error.

exception Ramsey\Uuid\Exception\DceSecurityException

Extends RuntimeException.

Thrown to indicate an exception occurred while dealing with DCE Security (version 2) UUIDs

exception Ramsey\Uuid\Exception\InvalidArgumentException

Extends InvalidArgumentException.

Thrown to indicate that the argument received is not valid.

exception Ramsey\Uuid\Exception\InvalidBytesException

Extends RuntimeException.

Thrown to indicate that the bytes being operated on are invalid in some way.

exception Ramsey\Uuid\Exception\InvalidUuidStringException

Extends Ramsey\Uuid\Exception\InvalidArgumentException.

Thrown to indicate that the string received is not a valid UUID.

exception Ramsey\Uuid\Exception\NameException

Extends RuntimeException.

Thrown to indicate that an error occurred while attempting to hash a namespace and name

exception Ramsey\Uuid\Exception\NodeException

Extends RuntimeException.

Thrown to indicate that attempting to fetch or create a node ID encountered an error.

exception Ramsey\Uuid\Exception\RandomSourceException

Extends RuntimeException.

Thrown to indicate that the source of random data encountered an error.

exception Ramsey\Uuid\Exception\TimeSourceException

Extends RuntimeException.

Thrown to indicate that the source of time encountered an error.

exception Ramsey\Uuid\Exception\UnableToBuildUuidException

Extends RuntimeException.

Thrown to indicate a builder is unable to build a UUID.

exception Ramsey\Uuid\Exception\UnsupportedOperationException

Extends LogicException.

Thrown to indicate that the requested operation is not supported.

1.10. Reference 61

https://www.php.net/runtimeexception
https://www.php.net/runtimeexception
https://www.php.net/invalidargumentexception
https://www.php.net/runtimeexception
https://www.php.net/runtimeexception
https://www.php.net/runtimeexception
https://www.php.net/runtimeexception
https://www.php.net/runtimeexception
https://www.php.net/runtimeexception
https://www.php.net/logicexception


ramsey/uuid, Release stable

1.10.22 Helper Functions

ramsey/uuid additionally provides the following helper functions, which return only the string standard representation
of a UUID.

Ramsey\\Uuid\\v1([$node[, $clockSeq]])

Generates a string standard representation of a version 1, Gregorian time UUID.

Parameters

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A string standard representation of a version 1 UUID

Return type
string

Ramsey\\Uuid\\v2($localDomain[, $localIdentifier[, $node[, $clockSeq]]])

Generates a string standard representation of a version 2, DCE Security UUID.

Parameters

• $localDomain (int) – The local domain to use (one of Uuid::DCE_DOMAIN_PERSON,
Uuid::DCE_DOMAIN_GROUP, or Uuid::DCE_DOMAIN_ORG)

• $localIdentifier (Ramsey\Uuid\Type\Integer|null) – A local identifier for the do-
main (defaults to system UID or GID for person or group)

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A string standard representation of a version 2 UUID

Return type
string

Ramsey\\Uuid\\v3($ns, $name)

Generates a string standard representation of a version 3, name-based (MD5) UUID.

Parameters

• $ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

• $name (string) – The name from which to generate an identifier

Returns
A string standard representation of a version 3 UUID

Return type
string

Ramsey\\Uuid\\v4()

Generates a string standard representation of a version 4, random UUID.

Returns
A string standard representation of a version 4 UUID

Return type
string

62 Chapter 1. Contents



ramsey/uuid, Release stable

Ramsey\\Uuid\\v5($ns, $name)

Generates a string standard representation of a version 5, name-based (SHA-1) UUID.

Parameters

• $ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

• $name (string) – The name from which to generate an identifier

Returns
A string standard representation of a version 5 UUID

Return type
string

Ramsey\\Uuid\\v6([$node[, $clockSeq]])

Generates a string standard representation of a version 6, reordered time UUID.

Parameters

• $node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

• $clockSeq (int|null) – An optional clock sequence to use

Returns
A string standard representation of a version 6 UUID

Return type
string

1.10.23 Predefined Namespaces

RFC 4122 defines a handful of UUIDs to use with “for some potentially interesting name spaces.”

Constant Description
Uuid::NAMESPACE_DNS The name string is a fully-qualified domain name.
Uuid::NAMESPACE_URL The name string is a URL.
Uuid::NAMESPACE_OID The name string is an ISO object identifier (OID).
Uuid::NAMESPACE_X500 The name string is an X.500 DN in DER or a text output format.

1.10.24 Calculators

interface Ramsey\Uuid\Math\CalculatorInterface

Provides functionality for performing mathematical calculations.

add($augend, ...$addends)

Parameters

• $augend (Ramsey\Uuid\Type\NumberInterface) – The first addend (the integer being
added to)

• ...$addends (Ramsey\Uuid\Type\NumberInterface) – The additional integers to a
add to the augend

Returns
The sum of all the parameters

1.10. Reference 63

https://tools.ietf.org/html/rfc4122
http://www.oid-info.com
https://en.wikipedia.org/wiki/X.500
https://en.wikipedia.org/wiki/Distinguished_Name
https://www.itu.int/rec/T-REC-X.690/


ramsey/uuid, Release stable

Return type
Ramsey\Uuid\Type\NumberInterface

subtract($minuend, ...$subtrahends)

Parameters

• $minuend (Ramsey\Uuid\Type\NumberInterface) – The integer being subtracted
from

• ...$subtrahends (Ramsey\Uuid\Type\NumberInterface) – The integers to subtract
from the minuend

Returns
The difference after subtracting all parameters

Return type
Ramsey\Uuid\Type\NumberInterface

multiply($multiplicand, ...$multipliers)

Parameters

• $multiplicand (Ramsey\Uuid\Type\NumberInterface) – The integer to be multi-
plied

• ...$multipliers (Ramsey\Uuid\Type\NumberInterface) – The factors by which to
multiply the multiplicand

Returns
The product of multiplying all the provided parameters

Return type
Ramsey\Uuid\Type\NumberInterface

divide($roundingMode, $scale, $dividend, ...$divisors)

Parameters

• $roundingMode (int) – The strategy for rounding the quotient; one of the Ramsey\Uuid\
Math\RoundingMode constants

• $scale (int) – The scale to use for the operation

• $dividend (Ramsey\Uuid\Type\NumberInterface) – The integer to be divided

• ...$divisors (Ramsey\Uuid\Type\NumberInterface) – The integers to divide
$dividend by, in the order in which the division operations should take place (left-to-
right)

Returns
The quotient of dividing the provided parameters left-to-right

Return type
Ramsey\Uuid\Type\NumberInterface

fromBase($value, $base)
Converts a value from an arbitrary base to a base-10 integer value.

Parameters

• $value (string) – The value to convert

• $base (int) – The base to convert from (i.e., 2, 16, 32, etc.)

64 Chapter 1. Contents



ramsey/uuid, Release stable

Returns
The base-10 integer value of the converted value

Return type
Ramsey\Uuid\Type\Integer

toBase($value, $base)
Converts a base-10 integer value to an arbitrary base.

Parameters

• $value (Ramsey\Uuid\Type\Integer) – The integer value to convert

• $base (int) – The base to convert to (i.e., 2, 16, 32, etc.)

Returns
The value represented in the specified base

Return type
string

toHexadecimal($value)
Converts an Integer instance to a Hexadecimal instance.

Parameters

• $value (Ramsey\Uuid\Type\Integer) – The Integer to convert to Hexadecimal

Return type
Ramsey\Uuid\Type\Hexadecimal

toInteger($value)
Converts a Hexadecimal instance to an Integer instance.

Parameters

• $value (Ramsey\Uuid\Type\Hexadecimal) – The Hexadecimal to convert to Integer

Return type
Ramsey\Uuid\Type\Integer

class Ramsey\Uuid\Math\RoundingMode

constant UNNECESSARY

Asserts that the requested operation has an exact result, hence no rounding is necessary.

constant UP

Rounds away from zero.

Always increments the digit prior to a nonzero discarded fraction. Note that this rounding mode never
decreases the magnitude of the calculated value.

constant DOWN

Rounds towards zero.

Never increments the digit prior to a discarded fraction (i.e., truncates). Note that this rounding mode never
increases the magnitude of the calculated value.

constant CEILING

Rounds towards positive infinity.

If the result is positive, behaves as for UP; if negative, behaves as for DOWN. Note that this rounding mode
never decreases the calculated value.

1.10. Reference 65



ramsey/uuid, Release stable

constant FLOOR

Rounds towards negative infinity.

If the result is positive, behave as for DOWN; if negative, behave as for UP. Note that this rounding mode
never increases the calculated value.

constant HALF_UP

Rounds towards “nearest neighbor” unless both neighbors are equidistant, in which case round up.

Behaves as for UP if the discarded fraction is >= 0.5; otherwise, behaves as for DOWN. Note that this is the
rounding mode commonly taught at school.

constant HALF_DOWN

Rounds towards “nearest neighbor” unless both neighbors are equidistant, in which case round down.

Behaves as for UP if the discarded fraction is > 0.5; otherwise, behaves as for DOWN.

constant HALF_CEILING

Rounds towards “nearest neighbor” unless both neighbors are equidistant, in which case round towards
positive infinity.

If the result is positive, behaves as for HALF_UP; if negative, behaves as for HALF_DOWN.

constant HALF_FLOOR

Rounds towards “nearest neighbor” unless both neighbors are equidistant, in which case round towards
negative infinity.

If the result is positive, behaves as for HALF_DOWN; if negative, behaves as for HALF_UP.

constant HALF_EVEN

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case rounds towards
the even neighbor.

Behaves as for HALF_UP if the digit to the left of the discarded fraction is odd; behaves as for HALF_DOWN
if it’s even.

Note that this is the rounding mode that statistically minimizes cumulative error when applied repeatedly
over a sequence of calculations. It is sometimes known as “Banker’s rounding”, and is chiefly used in the
USA.

1.10.25 Validators

interface Ramsey\Uuid\Validator\ValidatorInterface

getPattern()

Returns
The regular expression pattern used by this validator

Return type
string

validate($uuid)

Parameters

• $uuid (string) – The string to validate as a UUID

Returns
True if the provided string represents a UUID, false otherwise

66 Chapter 1. Contents



ramsey/uuid, Release stable

Return type
bool

class Ramsey\Uuid\Validator\GenericValidator

Implements Ramsey\Uuid\Validator\ValidatorInterface.

GenericValidator validates strings as UUIDs of any variant.

class Ramsey\Uuid\Rfc4122\Validator

Implements Ramsey\Uuid\Validator\ValidatorInterface.

Rfc4122Validator validates strings as UUIDs of the RFC 4122 variant.

1.11 Copyright

Copyright © 2012-2024 Ben Ramsey <ben@benramsey.com>

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View,
CA 94042, USA.

1.12 ramsey/uuid for Enterprise

Available as part of the Tidelift Subscription

Tidelift is working with the maintainers of ramsey/uuid and thousands of other open source projects to deliver commer-
cial support and maintenance for the open source dependencies you use to build your applications. Save time, reduce
risk, and improve code health, while paying the maintainers of the exact dependencies you use.

Learn More Request a Demo

Enterprise-ready open source software — managed for you

The Tidelift Subscription is a managed open source subscription for application dependencies covering millions of
open source projects across JavaScript, Python, Java, PHP, Ruby, .NET, and more.

Your subscription includes:

Security updates
Tidelift’s security response team coordinates patches for new breaking security vulnerabilities and alerts imme-
diately through a private channel, so your software supply chain is always secure.

Licensing verification and indemnification
Tidelift verifies license information to enable easy policy enforcement and adds intellectual property indemni-
fication to cover creators and users in case something goes wrong. You always have a 100% up-to-date bill of
materials for your dependencies to share with your legal team, customers, or partners.

Maintenance and code improvement
Tidelift ensures the software you rely on keeps working as long as you need it to work. Your managed depen-
dencies are actively maintained and we recruit additional maintainers where required.

Package selection and version guidance
We help you choose the best open source packages from the start—and then guide you through updates to stay
on the best releases as new issues arise.

1.11. Copyright 67

mailto:ben@benramsey.com
http://creativecommons.org/licenses/by/4.0/
https://tidelift.com/subscription/pkg/packagist-ramsey-uuid?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise
https://tidelift.com/subscription/request-a-demo?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise


ramsey/uuid, Release stable

Roadmap input
Take a seat at the table with the creators behind the software you use. Tidelift’s participating maintainers earn
more income as their software is used by more subscribers, so they’re interested in knowing what you need.

Tooling and cloud integration
Tidelift works with GitHub, GitLab, BitBucket, and more. We support every cloud platform (and other deploy-
ment targets, too).

The end result? All of the capabilities you expect from commercial-grade software, for the full breadth of open source
you use. That means less time grappling with esoteric open source trivia, and more time building your own applica-
tions—and your business.

Learn More Request a Demo

68 Chapter 1. Contents

https://tidelift.com/subscription/pkg/packagist-ramsey-uuid?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise
https://tidelift.com/subscription/request-a-demo?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise


CHAPTER

TWO

INDICES AND TABLES

• genindex

• search

69



ramsey/uuid, Release stable

70 Chapter 2. Indices and Tables



PHP NAMESPACE INDEX

r
Ramsey\Uuid, 49
Ramsey\Uuid\Exception, 60
Ramsey\Uuid\Fields, 50
Ramsey\Uuid\Guid, 55
Ramsey\Uuid\Math, 63
Ramsey\Uuid\Nonstandard, 56
Ramsey\Uuid\Rfc4122, 67
Ramsey\Uuid\Type, 59
Ramsey\Uuid\Validator, 66

71



ramsey/uuid, Release stable

72 PHP Namespace Index



INDEX

Symbols
__toString() (Ramsey\Uuid\Type\TypeInterface

method), 59
__toString() (Ramsey\Uuid\UuidInterface method), 50

A
add() (Ramsey\Uuid\Math\CalculatorInterface method),

63

B
BuilderNotFoundException, 60

C
CalculatorInterface (interface in Ram-

sey\Uuid\Math), 63
compareTo() (Ramsey\Uuid\UuidInterface method), 49

D
DateTimeException, 60
DceSecurityException, 61
Decimal (class in Ramsey\Uuid\Type), 60
divide() (Ramsey\Uuid\Math\CalculatorInterface

method), 64

E
equals() (Ramsey\Uuid\UuidInterface method), 49

F
Fields (class in Ramsey\Uuid\Guid), 55
Fields (class in Ramsey\Uuid\Nonstandard), 56
FieldsInterface (interface in Ramsey\Uuid\Fields), 50
FieldsInterface (interface in Ramsey\Uuid\Rfc4122),

51
fromBase() (Ramsey\Uuid\Math\CalculatorInterface

method), 64
fromBytes() (Ramsey\Uuid\Uuid method), 48
fromBytes() (Ramsey\Uuid\UuidFactoryInterface

method), 58
fromDateTime() (Ramsey\Uuid\Uuid method), 48
fromDateTime() (Ramsey\Uuid\UuidFactoryInterface

method), 59

fromInteger() (Ramsey\Uuid\Uuid method), 48
fromInteger() (Ramsey\Uuid\UuidFactoryInterface

method), 59
fromString() (Ramsey\Uuid\Uuid method), 48
fromString() (Ramsey\Uuid\UuidFactoryInterface

method), 58
fromUuidV1() (Ramsey\Uuid\Nonstandard\UuidV6

method), 56
fromUuidV1() (Ramsey\Uuid\Rfc4122\UuidV6 method),

54

G
GenericValidator (class in Ramsey\Uuid\Validator),

67
getBytes() (Ramsey\Uuid\Fields\FieldsInterface

method), 50
getBytes() (Ramsey\Uuid\UuidInterface method), 49
getClockSeq() (Ramsey\Uuid\Rfc4122\FieldsInterface

method), 51
getClockSeqHiAndReserved() (Ram-

sey\Uuid\Rfc4122\FieldsInterface method),
51

getClockSeqLow() (Ram-
sey\Uuid\Rfc4122\FieldsInterface method),
51

getDateTime() (Ramsey\Uuid\Nonstandard\UuidV6
method), 56

getDateTime() (Ramsey\Uuid\Rfc4122\UuidV1
method), 53

getDateTime() (Ramsey\Uuid\Rfc4122\UuidV2
method), 53

getDateTime() (Ramsey\Uuid\Rfc4122\UuidV6
method), 54

getDateTime() (Ramsey\Uuid\Rfc4122\UuidV7
method), 55

getFields() (Ramsey\Uuid\Guid\Guid method), 55
getFields() (Ramsey\Uuid\Nonstandard\Uuid

method), 56
getFields() (Ramsey\Uuid\Rfc4122\UuidInterface

method), 51
getFields() (Ramsey\Uuid\UuidInterface method), 50
getHex() (Ramsey\Uuid\UuidInterface method), 50

73



ramsey/uuid, Release stable

getInteger() (Ramsey\Uuid\UuidInterface method), 50
getLocalDomain() (Ramsey\Uuid\Rfc4122\UuidV2

method), 53
getLocalDomainName() (Ram-

sey\Uuid\Rfc4122\UuidV2 method), 53
getLocalIdentifier() (Ram-

sey\Uuid\Rfc4122\UuidV2 method), 53
getMicroseconds() (Ramsey\Uuid\Type\Time method),

60
getNode() (Ramsey\Uuid\Rfc4122\FieldsInterface

method), 51
getPattern() (Ramsey\Uuid\Validator\ValidatorInterface

method), 66
getSeconds() (Ramsey\Uuid\Type\Time method), 60
getTimeHiAndVersion() (Ram-

sey\Uuid\Rfc4122\FieldsInterface method),
51

getTimeLow() (Ramsey\Uuid\Rfc4122\FieldsInterface
method), 52

getTimeMid() (Ramsey\Uuid\Rfc4122\FieldsInterface
method), 52

getTimestamp() (Ram-
sey\Uuid\Rfc4122\FieldsInterface method),
52

getUrn() (Ramsey\Uuid\UuidInterface method), 50
getValidator() (Ramsey\Uuid\UuidFactoryInterface

method), 57
getVariant() (Ramsey\Uuid\Rfc4122\FieldsInterface

method), 52
getVersion() (Ramsey\Uuid\Rfc4122\FieldsInterface

method), 52
Guid (class in Ramsey\Uuid\Guid), 55

H
Hexadecimal (class in Ramsey\Uuid\Type), 60

I
Integer (class in Ramsey\Uuid\Type), 60
InvalidArgumentException, 61
InvalidBytesException, 61
InvalidUuidStringException, 61
isNegative() (Ramsey\Uuid\Type\NumberInterface

method), 59
isNil() (Ramsey\Uuid\Rfc4122\FieldsInterface

method), 52
isValid() (Ramsey\Uuid\Uuid method), 49

M
multiply() (Ramsey\Uuid\Math\CalculatorInterface

method), 64

N
NameException, 61

NodeException, 61
NumberInterface (class in Ramsey\Uuid\Type), 59

R
Ramsey\Uuid (namespace), 45, 49, 57
Ramsey\Uuid\Exception (namespace), 60
Ramsey\Uuid\Fields (namespace), 50
Ramsey\Uuid\Guid (namespace), 55
Ramsey\Uuid\Math (namespace), 63
Ramsey\Uuid\Nonstandard (namespace), 56
Ramsey\Uuid\Rfc4122 (namespace), 51, 53–55, 67
Ramsey\Uuid\Type (namespace), 59
Ramsey\Uuid\Validator (namespace), 66
RandomSourceException, 61
RoundingMode (class in Ramsey\Uuid\Math), 65
RoundingMode::CEILING (class constant), 65
RoundingMode::DOWN (class constant), 65
RoundingMode::FLOOR (class constant), 65
RoundingMode::HALF_CEILING (class constant), 66
RoundingMode::HALF_DOWN (class constant), 66
RoundingMode::HALF_EVEN (class constant), 66
RoundingMode::HALF_FLOOR (class constant), 66
RoundingMode::HALF_UP (class constant), 66
RoundingMode::UNNECESSARY (class constant), 65
RoundingMode::UP (class constant), 65

S
setFactory() (Ramsey\Uuid\Uuid method), 49
subtract() (Ramsey\Uuid\Math\CalculatorInterface

method), 64

T
Time (class in Ramsey\Uuid\Type), 60
TimeSourceException, 61
toBase() (Ramsey\Uuid\Math\CalculatorInterface

method), 65
toHexadecimal() (Ram-

sey\Uuid\Math\CalculatorInterface method),
65

toInteger() (Ramsey\Uuid\Math\CalculatorInterface
method), 65

toString() (Ramsey\Uuid\Type\TypeInterface method),
59

toString() (Ramsey\Uuid\UuidInterface method), 50
toUuidV1() (Ramsey\Uuid\Nonstandard\UuidV6

method), 56
toUuidV1() (Ramsey\Uuid\Rfc4122\UuidV6 method),

54
TypeInterface (class in Ramsey\Uuid\Type), 59

U
UnableToBuildUuidException, 61
UnsupportedOperationException, 61

74 Index



ramsey/uuid, Release stable

Uuid (class in Ramsey\Uuid), 45
Uuid (class in Ramsey\Uuid\Nonstandard), 56
uuid1() (Ramsey\Uuid\Uuid method), 46
uuid1() (Ramsey\Uuid\UuidFactoryInterface method),

57
uuid2() (Ramsey\Uuid\Uuid method), 46
uuid2() (Ramsey\Uuid\UuidFactoryInterface method),

57
uuid3() (Ramsey\Uuid\Uuid method), 47
uuid3() (Ramsey\Uuid\UuidFactoryInterface method),

57
uuid4() (Ramsey\Uuid\Uuid method), 47
uuid4() (Ramsey\Uuid\UuidFactoryInterface method),

58
uuid5() (Ramsey\Uuid\Uuid method), 47
uuid5() (Ramsey\Uuid\UuidFactoryInterface method),

58
uuid6() (Ramsey\Uuid\Uuid method), 47
uuid6() (Ramsey\Uuid\UuidFactoryInterface method),

58
uuid7() (Ramsey\Uuid\Uuid method), 48
Uuid::DCE_DOMAIN_GROUP (class constant), 46
Uuid::DCE_DOMAIN_ORG (class constant), 46
Uuid::DCE_DOMAIN_PERSON (class constant), 46
Uuid::NAMESPACE_DNS (class constant), 46
Uuid::NAMESPACE_OID (class constant), 46
Uuid::NAMESPACE_URL (class constant), 46
Uuid::NAMESPACE_X500 (class constant), 46
Uuid::NIL (class constant), 46
Uuid::RESERVED_FUTURE (class constant), 46
Uuid::RESERVED_MICROSOFT (class constant), 46
Uuid::RESERVED_NCS (class constant), 46
Uuid::RFC_4122 (class constant), 46
Uuid::UUID_TYPE_DCE_SECURITY (class constant), 45
Uuid::UUID_TYPE_HASH_MD5 (class constant), 45
Uuid::UUID_TYPE_HASH_SHA1 (class constant), 45
Uuid::UUID_TYPE_PEABODY (class constant), 45
Uuid::UUID_TYPE_RANDOM (class constant), 45
Uuid::UUID_TYPE_REORDERED_TIME (class constant),

45
Uuid::UUID_TYPE_TIME (class constant), 45
Uuid::UUID_TYPE_UNIX_TIME (class constant), 46
UuidExceptionInterface (interface in Ram-

sey\Uuid\Exception), 60
UuidFactoryInterface (interface in Ramsey\Uuid), 57
UuidInterface (interface in Ramsey\Uuid), 49
UuidInterface (interface in Ramsey\Uuid\Rfc4122), 51
UuidV1 (class in Ramsey\Uuid\Rfc4122), 53
UuidV2 (class in Ramsey\Uuid\Rfc4122), 53
UuidV3 (class in Ramsey\Uuid\Rfc4122), 54
UuidV4 (class in Ramsey\Uuid\Rfc4122), 54
UuidV5 (class in Ramsey\Uuid\Rfc4122), 54
UuidV6 (class in Ramsey\Uuid\Nonstandard), 56
UuidV6 (class in Ramsey\Uuid\Rfc4122), 54

UuidV7 (class in Ramsey\Uuid\Rfc4122), 55
UuidV8 (class in Ramsey\Uuid\Rfc4122), 55

V
validate() (Ramsey\Uuid\Validator\ValidatorInterface

method), 66
Validator (class in Ramsey\Uuid\Rfc4122), 67
ValidatorInterface (interface in Ram-

sey\Uuid\Validator), 66

Index 75


	Contents
	Introduction
	What Is a UUID?

	Getting Started
	Requirements
	Install With Composer
	Using ramsey/uuid

	RFC 4122 UUIDs
	Version 1: Gregorian Time
	Providing a Custom Node
	Generating a Random Node
	What’s a Clock Sequence?
	Privacy Concerns

	Version 2: DCE Security
	Domains
	Custom and Random Nodes
	Clock Sequence
	Problems With Version 2 UUIDs
	Privacy
	Limited Uniqueness
	Lossy Timestamps


	Version 3: Name-based (MD5)
	Version 4: Random
	Version 5: Name-based (SHA-1)
	Custom Namespaces

	Version 6: Reordered Time
	Custom and Random Nodes
	Clock Sequence
	Version 1-to-6 Conversion
	Ordered-time to Version 6 Conversion
	Privacy Concerns

	Version 7: Unix Epoch Time
	Convert a Version 7 UUID to a ULID

	Version 8: Custom

	Nonstandard UUIDs
	Version 6: Reordered Time
	Globally Unique Identifiers (GUIDs)
	Converting GUIDs to UUIDs

	Other Nonstandard UUIDs

	Using In a Database
	Storing As a String
	Storing As Bytes
	Using As a Primary Key
	Using As a Unique Key
	Insertion Order and Sorting

	Customization
	Ordered-time Codec
	Timestamp-first COMB Codec
	Using a Custom Calculator
	Using a Custom Validator
	Replace the Default Factory

	Testing With UUIDs
	Inject a UUID of a Specific Type
	Returning Specific UUIDs From a Static Method
	Mocking UuidInterface

	Upgrading ramsey/uuid
	Version 3 to 4
	What’s New?
	What’s Changed?
	Uuid Static Methods
	Changed Return Types
	Deprecations
	UuidInterface
	Uuid

	Interface Changes
	UuidInterface
	UuidFactoryInterface
	Builder\UuidBuilderInterface
	Converter\TimeConverterInterface
	Provider\TimeProviderInterface
	Provider\NodeProviderInterface

	Constructor Changes
	Uuid
	Builder\DefaultUuidBuilder
	Provider\Node\FallbackNodeProvider
	Provider\Time\FixedTimeProvider


	Version 2 to 3

	Frequently Asked Questions (FAQs)
	How do I fix “rhumsaa/uuid is abandoned” messages?
	Why does ramsey/uuid use final?
	But Why?
	Overriding Behavior
	Testing With UUIDs


	Reference
	Uuid
	UuidInterface
	Fields\FieldsInterface
	Rfc4122\UuidInterface
	Rfc4122\FieldsInterface
	Rfc4122\UuidV1
	Rfc4122\UuidV2
	Rfc4122\UuidV3
	Rfc4122\UuidV4
	Rfc4122\UuidV5
	Rfc4122\UuidV6
	Rfc4122\UuidV7
	Rfc4122\UuidV8
	Guid\Fields
	Guid\Guid
	Nonstandard\Fields
	Nonstandard\Uuid
	Nonstandard\UuidV6
	UuidFactoryInterface
	Types
	Exceptions
	Helper Functions
	Predefined Namespaces
	Calculators
	Validators

	Copyright
	ramsey/uuid for Enterprise

	Indices and Tables
	PHP Namespace Index
	Index

