

ramsey/uuid Manual

For ramsey/uuid [https://github.com/ramsey/uuid] 4.7.4. Updated on 2023-04-15.

This work is licensed under the Creative Commons Attribution 4.0 International [https://creativecommons.org/licenses/by/4.0/] license.

Support ramsey/uuid!

Your support encourages and motivates me to continue building and
maintaining open source software. If you benefit from my work, consider
supporting me financially.

You may support ramsey/uuid as an individual through GitHub Sponsors [https://github.com/sponsors/ramsey] or as a company through the
Tidelift Subscription. With the Tidelift Subscription, you can get
commercial maintenance and assurances, while supporting my work.

Learn more about ramsey/uuid for enterprise!

Contents

	Introduction
	What Is a UUID?

	Getting Started
	Requirements

	Install With Composer

	Using ramsey/uuid

	RFC 4122 UUIDs
	Version 1: Gregorian Time

	Version 2: DCE Security

	Version 3: Name-based (MD5)

	Version 4: Random

	Version 5: Name-based (SHA-1)

	Version 6: Reordered Time

	Version 7: Unix Epoch Time

	Version 8: Custom

	Nonstandard UUIDs
	Version 6: Reordered Time

	Globally Unique Identifiers (GUIDs)

	Other Nonstandard UUIDs

	Using In a Database
	Storing As a String

	Storing As Bytes

	Using As a Primary Key

	Using As a Unique Key

	Insertion Order and Sorting

	Customization
	Ordered-time Codec

	Timestamp-first COMB Codec

	Using a Custom Calculator

	Using a Custom Validator

	Replace the Default Factory

	Testing With UUIDs
	Inject a UUID of a Specific Type

	Returning Specific UUIDs From a Static Method

	Mocking UuidInterface

	Upgrading ramsey/uuid
	Version 3 to 4

	Version 2 to 3

	FAQs
	How do I fix “rhumsaa/uuid is abandoned” messages?

	Why does ramsey/uuid use final?

	Reference
	Uuid

	UuidInterface

	Fields\FieldsInterface

	Rfc4122\UuidInterface

	Rfc4122\FieldsInterface

	Rfc4122\UuidV1

	Rfc4122\UuidV2

	Rfc4122\UuidV3

	Rfc4122\UuidV4

	Rfc4122\UuidV5

	Rfc4122\UuidV6

	Rfc4122\UuidV7

	Rfc4122\UuidV8

	Guid\Fields

	Guid\Guid

	Nonstandard\Fields

	Nonstandard\Uuid

	Nonstandard\UuidV6

	UuidFactoryInterface

	Types

	Exceptions

	Helper Functions

	Predefined Namespaces

	Calculators

	Validators

	Copyright

	ramsey/uuid for Enterprise

Indices and Tables

	Index

	Search Page

Introduction

ramsey/uuid is a PHP library for generating and working with RFC 4122 [https://tools.ietf.org/html/rfc4122] version
1, 2, 3, 4, 5, 6, and 7 universally unique identifiers (UUID). ramsey/uuid also
supports optional and non-standard features, such as GUIDs and other approaches
for encoding/decoding UUIDs.

What Is a UUID?

A universally unique identifier, or UUID, is a 128-bit unsigned integer, usually
represented as a hexadecimal string split into five groups with dashes. The most
widely-known and used types of UUIDs are defined by RFC 4122 [https://tools.ietf.org/html/rfc4122].

A UUID, when encoded in hexadecimal string format, looks like:

ebb5c735-0308-4e3c-9aea-8a270aebfe15

The probability of duplicating a UUID is close to zero, so they are a great
choice for generating unique identifiers in distributed systems.

UUIDs can also be stored in binary format, as a string of 16 bytes.

Getting Started

Requirements

ramsey/uuid 4.7.4 requires the following:

	PHP 8.0+

	ext-json [https://www.php.net/manual/en/book.json.php]

The JSON extension is normally enabled by default, but it is possible to disable
it. Other required extensions include
PCRE [https://www.php.net/manual/en/book.pcre.php]
and SPL [https://www.php.net/manual/en/book.spl.php]. These standard
extensions cannot be disabled without patching PHP’s build system and/or C
sources.

ramsey/uuid recommends installing/enabling the following extensions. While not
required, these extensions improve the performance of ramsey/uuid.

	ext-gmp [https://www.php.net/manual/en/book.gmp.php]

	ext-bcmath [https://www.php.net/manual/en/book.bc.php]

Install With Composer

The only supported installation method for ramsey/uuid is
Composer [https://getcomposer.org]. Use the following command to add
ramsey/uuid to your project dependencies:

composer require ramsey/uuid

Using ramsey/uuid

After installing ramsey/uuid, the quickest way to get up-and-running is to use
the static generation methods.

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

printf(
 "UUID: %s\nVersion: %d\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion()
);

This will return an instance of Ramsey\Uuid\Rfc4122\UuidV4.

Tip

Use the Interfaces

Feel free to use instanceof to check the specific instance types of
UUIDs. However, when using type hints, it’s best to use the interfaces.

The most lenient interface is Ramsey\Uuid\UuidInterface,
while Ramsey\Uuid\Rfc4122\UuidInterface ensures the
UUIDs you’re using conform to the RFC 4122 [https://tools.ietf.org/html/rfc4122] standard. If you’re not sure
which one to use, start with the stricter
Rfc4122\UuidInterface.

ramsey/uuid provides a number of helpful static methods that help you work with
and generate most types of UUIDs, without any special customization of the
library.

	Method

	Description

	Uuid::uuid1()

	This generates a Version 1: Gregorian Time UUID.

	Uuid::uuid2()

	This generates a Version 2: DCE Security UUID.

	Uuid::uuid3()

	This generates a Version 3: Name-based (MD5) UUID.

	Uuid::uuid4()

	This generates a Version 4: Random UUID.

	Uuid::uuid5()

	This generates a Version 5: Name-based (SHA-1) UUID.

	Uuid::uuid6()

	This generates a Version 6: Reordered Time UUID.

	Uuid::uuid7()

	This generates a Version 7: Unix Epoch Time UUID.

	Uuid::isValid()

	Checks whether a string is a valid UUID.

	Uuid::fromString()

	Creates a UUID instance from a string UUID.

	Uuid::fromBytes()

	Creates a UUID instance from a 16-byte string.

	Uuid::fromInteger()

	Creates a UUID instance from a string integer.

	Uuid::fromDateTime()

	Creates a version 1 UUID instance from a PHP DateTimeInterface [https://www.php.net/datetimeinterface].

RFC 4122 UUIDs

RFC 4122 [https://tools.ietf.org/html/rfc4122] defines five versions of UUID, while a new Internet-Draft under
review [https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00] defines three new versions. Each version has different generation
algorithms and properties. Which one you choose depends on your use-case. You
can find out more about their applications on the specific page for that version.

	Version 1: Gregorian Time
	This version of UUID combines a timestamp, node value (in the form of a MAC
address from the local computer’s network interface), and a clock sequence
to ensure uniqueness. For more details, see Version 1: Gregorian Time.

	Version 2: DCE Security
	This version of UUID is the same as Version 1, except the clock_seq_low
field is replaced with a local domain and the time_low field is
replaced with a local identifier. For more details, see
Version 2: DCE Security.

	Version 3: Name-based (MD5)
	This version of UUID hashes together a namespace and a name to create a
deterministic UUID. The hashing algorithm used is MD5. For more details, see
Version 3: Name-based (MD5).

	Version 4: Random
	This version creates a UUID using truly-random or pseudo-random numbers. For
more details, see Version 4: Random.

	Version 5: Named-based (SHA-1)
	This version of UUID hashes together a namespace and a name to create a
deterministic UUID. The hashing algorithm used is SHA-1. For more details,
see Version 5: Name-based (SHA-1).

	Version 6: Reordered Time
	This version of UUID combines the features of a
version 1 UUID with a monotonically increasing
UUID. For more details, see Version 6: Reordered Time.

	Version 7: Unix Epoch Time
	This version of UUID combines a timestamp–based on milliseconds elapsed
since the Unix Epoch–and random bytes to create a monotonically increasing,
sortable UUID without the privacy and entropy concerns associated with
version 1 and version 6 UUIDs. For more details, see Version 7: Unix Epoch Time.

	Version 8: Custom
	This version of UUID allows applications to generate custom identifiers in
an RFC-compatible format. For more details, see Version 8: Custom.

Version 1: Gregorian Time

Attention

If you need a time-based UUID, and you don’t need the other features
included in version 1 UUIDs, we recommend using
version 7 UUIDs.

A version 1 UUID uses the current time, along with the MAC address (or node)
for a network interface on the local machine. This serves two purposes:

	You can know when the identifier was created.

	You can know where the identifier was created.

In a distributed system, these two pieces of information can be valuable. Not
only is there no need for a central authority to generate identifiers, but you
can determine what nodes in your infrastructure created the UUIDs and at what
time.

Tip

It is also possible to use a randomly-generated node, rather than a
hardware address. This is useful for when you don’t want to leak machine
information, while still using a UUID based on time. Keep reading to find
out how.

By default, ramsey/uuid will attempt to look up a MAC address for the machine it
is running on, using this value as the node. If it cannot find a MAC address, it
will generate a random node.

Generate a version 1, Gregorian time UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid1();

printf(
 "UUID: %s\nVersion: %d\nDate: %s\nNode: %s\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion(),
 $uuid->getDateTime()->format('r'),
 $uuid->getFields()->getNode()->toString()
);

This will generate a version 1 UUID and print out its string representation, the
time the UUID was created, and the node used to create the UUID.

It will look something like this:

UUID: e22e1622-5c14-11ea-b2f3-0242ac130003
Version: 1
Date: Sun, 01 Mar 2020 23:32:15 +0000
Node: 0242ac130003

You may provide custom values for version 1 UUIDs, including node and clock
sequence.

Provide custom node and clock sequence to create a version 1,
Gregorian time UUID

use Ramsey\Uuid\Provider\Node\StaticNodeProvider;
use Ramsey\Uuid\Type\Hexadecimal;
use Ramsey\Uuid\Uuid;

$nodeProvider = new StaticNodeProvider(new Hexadecimal('121212121212'));
$clockSequence = 16383;

$uuid = Uuid::uuid1($nodeProvider->getNode(), $clockSequence);

Tip

Version 1 UUIDs generated in ramsey/uuid are instances of UuidV1. Check out
the Ramsey\Uuid\Rfc4122\UuidV1 API documentation to learn
more about what you can do with a UuidV1 instance.

Providing a Custom Node

You may override the default behavior by passing your own node value when
generating a version 1 UUID.

In the example above, we saw how to
pass a custom node and clock sequence. An interesting thing to note about the
example is its use of StaticNodeProvider. Why didn’t we pass in a
Hexadecimal value, instead?

According to RFC 4122, section 4.5 [https://tools.ietf.org/html/rfc4122#section-4.5], node values that do not identify the
host — in other words, our own custom node value — should set the
unicast/multicast bit to one (1). This bit will never be set in IEEE 802
addresses obtained from network cards, so it helps to distinguish it from a
hardware MAC address.

The StaticNodeProvider sets this bit for you. This is why we used it rather
than providing a Hexadecimal
value directly.

Recall from the example that the node value we set was 121212121212, but if
you take a look at this value with $uuid->getFields()->getNode()->toString(),
it becomes:

131212121212

That’s a result of this bit being set by the StaticNodeProvider.

Generating a Random Node

Instead of providing a custom node, you may also generate a random node each
time you generate a version 1 UUID. The RandomNodeProvider may be used to
generate a random node value, and like the StaticNodeProvider, it also sets the
unicast/multicast bit for you.

Provide a random node value to create a version 1, Gregorian time UUID

use Ramsey\Uuid\Provider\Node\RandomNodeProvider;
use Ramsey\Uuid\Uuid;

$nodeProvider = new RandomNodeProvider();

$uuid = Uuid::uuid1($nodeProvider->getNode());

What’s a Clock Sequence?

The clock sequence part of a version 1 UUID helps prevent collisions. Since this
UUID is based on a timestamp and a machine node value, it is possible for
collisions to occur for multiple UUIDs generated within the same microsecond on
the same machine.

The clock sequence is the solution to this problem.

The clock sequence is a 14-bit number — this supports values from 0 to 16,383
— which means it should be possible to generate up to 16,384 UUIDs per
microsecond with the same node value, before hitting a collision.

Caution

ramsey/uuid does not use stable storage for clock sequence values.
Instead, all clock sequences are randomly-generated. If you are generating
a lot of version 1 UUIDs every microsecond, it is possible to hit collisions
because of the random values. If this is the case, you should use your own
mechanism for generating clock sequence values, to ensure against
randomly-generated duplicates.

See section 4.2 of RFC 4122 [https://tools.ietf.org/html/rfc4122#section-4.2], for more information.

Privacy Concerns

As discussed earlier in this section, version 1 UUIDs use a MAC address from a
local hardware network interface. This means it is possible to uniquely identify
the machine on which a version 1 UUID was created.

If the value provided by the timestamp of a version 1 UUID is important to you,
but you do not wish to expose the interface address of any of your local
machines, see Generating a Random Node or Providing a Custom Node.

If you do not need an identifier with a timestamp value embedded in it, see
Version 4: Random to learn about random UUIDs.

Version 2: DCE Security

Tip

DCE Security UUIDs are so-called because they were defined as part of the
“Authentication and Security Services” for the Distributed Computing
Environment [https://en.wikipedia.org/wiki/Distributed_Computing_Environment] (DCE) in the early 1990s.

Version 2 UUIDs are not widely used. See Problems With Version 2 UUIDs
before deciding whether to use them.

Like a version 1 UUID, a version 2 UUID uses the
current time, along with the MAC address (or node) for a network interface on
the local machine. Additionally, a version 2 UUID replaces the low part of the
time field with a local identifier such as the user ID or group ID of the local
account that created the UUID. This serves three purposes:

	You can know when the identifier was created (see
Lossy Timestamps).

	You can know where the identifier was created.

	You can know who created the identifier.

In a distributed system, these three pieces of information can be valuable. Not
only is there no need for a central authority to generate identifiers, but you
can determine what nodes in your infrastructure created the UUIDs, at what time
they were created, and the account on the machine that created them.

By default, ramsey/uuid will attempt to look up a MAC address for the machine it
is running on, using this value as the node. If it cannot find a MAC address, it
will generate a random node.

Use a domain to generate a version 2, DCE Security UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid2(Uuid::DCE_DOMAIN_PERSON);

printf(
 "UUID: %s\nVersion: %d\nDate: %s\nNode: %s\nDomain: %s\nID: %s\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion(),
 $uuid->getDateTime()->format('r'),
 $uuid->getFields()->getNode()->toString(),
 $uuid->getLocalDomainName(),
 $uuid->getLocalIdentifier()->toString()
);

This will generate a version 2 UUID and print out its string representation, the
time the UUID was created, and the node used to create it, as well as the name
of the local domain specified and the local domain identifier (in this case, a
POSIX [https://en.wikipedia.org/wiki/POSIX] UID, automatically obtained from the local machine).

It will look something like this:

UUID: 000001f5-5e9a-21ea-9e00-0242ac130003
Version: 2
Date: Thu, 05 Mar 2020 04:30:10 +0000
Node: 0242ac130003
Domain: person
ID: 501

Just as with version 1 UUIDs, you may provide custom values for version 2 UUIDs,
including local identifier, node, and clock sequence.

Provide custom identifier, node, and clock sequence to create a
version 2, DCE Security UUID

use Ramsey\Uuid\Provider\Node\StaticNodeProvider;
use Ramsey\Uuid\Type\Hexadecimal;
use Ramsey\Uuid\Type\Integer;
use Ramsey\Uuid\Uuid;

$localId = new Integer(1001);
$nodeProvider = new StaticNodeProvider(new Hexadecimal('121212121212'));
$clockSequence = 63;

$uuid = Uuid::uuid2(
 Uuid::DCE_DOMAIN_ORG,
 $localId,
 $nodeProvider->getNode(),
 $clockSequence
);

Tip

Version 2 UUIDs generated in ramsey/uuid are instances of UuidV2. Check out
the Ramsey\Uuid\Rfc4122\UuidV2 API documentation to learn
more about what you can do with a UuidV2 instance.

Domains

The domain value tells what the local identifier represents.

If using the person or group domains, ramsey/uuid will attempt to look up
these values from the local machine. On POSIX [https://en.wikipedia.org/wiki/POSIX] systems, it will use id -u
and id -g, respectively. On Windows, it will use whoami and wmic.

The org domain is site-defined. Its intent is to identify the organization
that generated the UUID, but since this can have different meanings for
different companies and projects, you get to define its value.

DCE Security Domains

	Constant

	Description

	Uuid::DCE_DOMAIN_PERSON

	The local identifier refers to a person (e.g., UID).

	Uuid::DCE_DOMAIN_GROUP

	The local identifier refers to a group (e.g., GID).

	Uuid::DCE_DOMAIN_ORG

	The local identifier refers to an organization (this is site-defined).

Note

According to section 5.2.1.1 of DCE 1.1: Authentication and Security Services [https://publications.opengroup.org/c311], the domain “can potentially hold
values outside the range [0, 28 – 1]; however, the only values
currently registered are in the range [0, 2].”

As a result, ramsey/uuid supports only the person, group, and org
domains.

Custom and Random Nodes

In the example above, we provided a
custom node when generating a version 2 UUID. You may also generate random
node values.

To learn more, see the Providing a Custom Node and
Generating a Random Node sections under Version 1: Gregorian Time.

Clock Sequence

In a version 2 UUID, the clock sequence serves the same purpose as in a version
1 UUID. See What’s a Clock Sequence? to learn more.

Warning

The clock sequence in a version 2 UUID is a 6-bit number. It supports values
from 0 to 63. This is different from the 14-bit number used by version 1
UUIDs.

See Limited Uniqueness to understand how this
affects version 2 UUIDs.

Problems With Version 2 UUIDs

Version 2 UUIDs can be useful for the data they contain. However, there are
trade-offs in choosing to use them.

Privacy

Unless using a randomly-generated node, version 2 UUIDs use the MAC address for
a local hardware interface as the node value. In addition, they use a local
identifier — usually an account or group ID. Some may consider the use of
these identifying features a breach of privacy. The use of a timestamp further
complicates the issue, since these UUIDs could be used to identify a user
account on a specific machine at a specific time.

If you don’t need an identifier with a local identifier and timestamp value
embedded in it, see Version 4: Random to learn about random UUIDs.

Limited Uniqueness

With the inclusion of the local identifier and domain comes a serious limitation
in the number of unique UUIDs that may be created. This is because:

	The local identifier replaces the lower 32 bits of the timestamp.

	The domain replaces the lower 8 bits of the clock sequence.

As a result, the timestamp advances — the clock ticks — only once every
429.49 seconds (about 7 minutes). This means the clock sequence is important to
ensure uniqueness, but since the clock sequence is only 6 bits, compared to 14
bits for version 1 UUIDs, only 64 unique UUIDs per combination of node,
domain, and identifier may be generated per 7-minute tick of the clock.

You can overcome this lack of uniqueness by using a
random node, which provides 47 bits of
randomness to the UUID — after setting the unicast/multicast bit (see
discussion on Providing a Custom Node) — increasing the number of UUIDs
per 7-minute clock tick to 253 (or 9,007,199,254,740,992), at the
expense of remaining locally unique.

Note

This lack of uniqueness did not present a problem for DCE, since:

[T]he security architecture of DCE depends upon the uniqueness of
security-version UUIDs only within the context of a cell; that is,
only within the context of the local [Registration Service’s]
(persistent) datastore, and that degree of uniqueness can be guaranteed
by the RS itself (namely, the RS maintains state in its datastore, in
the sense that it can always check that every UUID it maintains is
different from all other UUIDs it maintains). In other words, while
security-version UUIDs are (like all UUIDs) specified to be “globally
unique in space and time”, security is not compromised if they are
merely “locally unique per cell”.

—DCE 1.1: Authentication and Security Services, section 5.2.1.1 [https://publications.opengroup.org/c311]

Lossy Timestamps

Version 2 UUIDs are generated in the same way as version 1 UUIDs, but the low
part of the timestamp (the time_low field) is replaced by a 32-bit integer
that represents a local identifier. Because of this, not only do version 2 UUIDs
have limited uniqueness, but they
also lack time precision.

When reconstructing the timestamp to return a DateTimeInterface [https://www.php.net/datetimeinterface] instance from
UuidV2::getDateTime(),
we replace the 32 lower bits of the timestamp with zeros, since the local
identifier should not be part of the timestamp. This results in a loss of
precision, causing the timestamp to be off by a range of 0 to 429.4967295
seconds (or 7 minutes, 9 seconds, and 496,730 microseconds).

When using version 2 UUIDs, treat the timestamp as an approximation. At worst,
it could be off by about 7 minutes.

Hint

If the value 429.4967295 looks familiar, it’s because it directly
corresponds to 232 – 1, or 0xffffffff. The local identifier is
32-bits, and we have set each of these bits to 0, so the maximum range of
timestamp drift is 0x00000000 to 0xffffffff (counted in
100-nanosecond intervals).

Version 3: Name-based (MD5)

Attention

RFC 4122 [https://tools.ietf.org/html/rfc4122] states, “If backward compatibility is not an issue, SHA-1 is
preferred.” As a result, the use of version 5 UUIDs is preferred over version 3 UUIDs, unless you have a
specific use-case for version 3 UUIDs.

Note

To learn about name-based UUIDs, read the section Version 5: Name-based (SHA-1).
Version 3 UUIDs behave exactly the same as version 5 UUIDs. The only difference is the hashing algorithm used to
generate the UUID.

Version 3 UUIDs use MD5 [https://en.wikipedia.org/wiki/MD5] as the hashing algorithm for combining
the namespace and the name.

Due to the use of a different hashing algorithm, version 3 UUIDs generated with
any given namespace and name will differ from version 5 UUIDs generated using
the same namespace and name.

As an example, let’s take a look at generating a version 3 UUID using the same
namespace and name used in “Generate a version 5, name-based UUID for a URL.”

Generate a version 3, name-based UUID for a URL

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid3(Uuid::NAMESPACE_URL, 'https://www.php.net');

Even though the namespace and name are the same, the version 3 UUID generated
will always be 3f703955-aaba-3e70-a3cb-baff6aa3b28f.

Likewise, we can use the custom namespace we created in
“Generate a custom namespace UUID” to generate a version 3 UUID, but the
result will be different from the version 5 UUID with the same custom namespace
and name.

Use a custom namespace to create version 3, name-based UUIDs

use Ramsey\Uuid\Uuid;

const WIDGET_NAMESPACE = '4bdbe8ec-5cb5-11ea-bc55-0242ac130003';

$uuid = Uuid::uuid3(WIDGET_NAMESPACE, 'widget/1234567890');

With this custom namespace, the version 3 UUID for the name “widget/1234567890”
will always be 53564aa3-4154-3ca5-ac90-dba59dc7d3cb.

Tip

Version 3 UUIDs generated in ramsey/uuid are instances of UuidV3. Check out
the Ramsey\Uuid\Rfc4122\UuidV3 API documentation to learn
more about what you can do with a UuidV3 instance.

Version 4: Random

Version 4 UUIDs are perhaps the most popular form of UUID. They are
randomly-generated and do not contain any information about the time they are
created or the machine that generated them. If you don’t care about this
information, then a version 4 UUID might be perfect for your needs.

Generate a version 4, random UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

printf(
 "UUID: %s\nVersion: %d\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion()
);

This will generate a version 4 UUID and print out its string representation.
It will look something like this:

UUID: 1ee9aa1b-6510-4105-92b9-7171bb2f3089
Version: 4

Tip

Version 4 UUIDs generated in ramsey/uuid are instances of UuidV4. Check out
the Ramsey\Uuid\Rfc4122\UuidV4 API documentation to learn
more about what you can do with a UuidV4 instance.

Version 5: Name-based (SHA-1)

Danger

Since version 3 and version 5 UUIDs essentially
use a salt (the namespace) to hash data, it may be tempting to use them to
hash passwords. DO NOT do this under any circumstances! You should not
store any sensitive information in a version 3 or version 5 UUID, since MD5
and SHA-1 are insecure and have known attacks demonstrated against them [https://en.wikipedia.org/wiki/Hash_function_security_summary]. Use these
types of UUIDs as identifiers only.

The first thing that comes to mind with most people think of a UUID is a
random identifier, but name-based UUIDs aren’t random at all. In fact, they’re
deterministic. For any given identical namespace and name, you will always
generate the same UUID.

Name-based UUIDs are useful when you need an identifier that’s based on
something’s name — think identity — and will always be the same no
matter where or when it is created.

For example, let’s say I want to create an identifier for a URL. I could use
a version 1 or version 4
UUID to create an identifier for the URL, but what if I’m working with a
distributed system, and I want to ensure that every client in this system can
always generate the same identifier for any given URL?

This is where a name-based UUID comes in handy.

Name-based UUIDs combine a namespace with a name. This way, the UUIDs are unique
to the namespace they’re created in. RFC 4122 [https://tools.ietf.org/html/rfc4122] defines some
predefined namespaces, one of which is
for URLs.

Note

Version 5 UUIDs use SHA-1 [https://en.wikipedia.org/wiki/SHA-1] as the hashing algorithm for combining the
namespace and the name.

Generate a version 5, name-based UUID for a URL

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid5(Uuid::NAMESPACE_URL, 'https://www.php.net');

The UUID generated will always be the same, as long as the namespace and name
are the same. The version 5 UUID for “https://www.php.net” in the URL namespace
will always be a8f6ae40-d8a7-58f0-be05-a22f94eca9ec. See for yourself. Run
the code above, and you’ll see it always generates the same UUID.

Tip

Version 5 UUIDs generated in ramsey/uuid are instances of UuidV5. Check out
the Ramsey\Uuid\Rfc4122\UuidV5 API documentation to learn
more about what you can do with a UuidV5 instance.

Custom Namespaces

If you’re working with name-based UUIDs for names that don’t fit into any of
the predefined namespaces, or you don’t
want to use any of the predefined namespaces, you can create your own namespace.

The best way to do this is to generate a version 1 or
version 4 UUID and save this UUID as your namespace.

Generate a custom namespace UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid1();

printf("My namespace UUID is %s\n", $uuid->toString());

This will generate a version 1, Gregorian time UUID, which we’ll store to a
constant so we can reuse it as our own custom namespace.

Use a custom namespace to create version 5, name-based UUIDs

use Ramsey\Uuid\Uuid;

const WIDGET_NAMESPACE = '4bdbe8ec-5cb5-11ea-bc55-0242ac130003';

$uuid = Uuid::uuid5(WIDGET_NAMESPACE, 'widget/1234567890');

With this custom namespace, the version 5 UUID for the name “widget/1234567890”
will always be a35477ae-bfb1-5f2e-b5a4-4711594d855f.

We can publish this namespace, allowing others to use it to generate identifiers
for widgets. When two or more systems try to reference the same widget, they’ll
end up generating the same identifier for it, which is exactly what we want.

Version 6: Reordered Time

Note

Version 6, reordered time UUIDs are a new format of UUID, proposed in an
Internet-Draft under review [https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00#section-5.6] at the IETF. While the draft is still going
through the IETF process, the version 6 format is not expected to change
in any way that breaks compatibility.

Attention

If you need a time-based UUID, and you don’t need the other features
included in version 6 UUIDs, we recommend using
version 7 UUIDs.

Version 6 UUIDs solve two problems that have long existed [https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/] with the use of
version 1 UUIDs:

	Scattered database records

	Inability to sort by an identifier in a meaningful way (i.e., insert order)

To overcome these issues, we need the ability to generate UUIDs that are
monotonically increasing while still providing all the benefits of version
1 UUIDs.

Version 6 UUIDs do this by storing the time in standard byte order, instead of
breaking it up and rearranging the time bytes, according to the RFC 4122 [https://tools.ietf.org/html/rfc4122]
definition. All other fields remain the same, and the version maintains its
position, according to RFC 4122.

In all other ways, version 6 UUIDs function like version 1 UUIDs.

Tip

Prior to version 4.0.0, ramsey/uuid provided a solution for this with the
ordered-time codec. Use of the
ordered-time codec is still valid and acceptable. However, you may replace
UUIDs generated using the ordered-time codec with version 6 UUIDs. Keep
reading to find out how.

Generate a version 6, reordered time UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid6();

printf(
 "UUID: %s\nVersion: %d\nDate: %s\nNode: %s\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion(),
 $uuid->getDateTime()->format('r'),
 $uuid->getFields()->getNode()->toString()
);

This will generate a version 6 UUID and print out its string representation, the
time the UUID was created, and the node used to create the UUID.

It will look something like this:

UUID: 1ea60f56-b67b-61fc-829a-0242ac130003
Version: 6
Date: Sun, 08 Mar 2020 04:29:37 +0000
Node: 0242ac130003

You may provide custom values for version 6 UUIDs, including node and clock
sequence.

Provide custom node and clock sequence to create a version 6,
reordered time UUID

use Ramsey\Uuid\Provider\Node\StaticNodeProvider;
use Ramsey\Uuid\Type\Hexadecimal;
use Ramsey\Uuid\Uuid;

$nodeProvider = new StaticNodeProvider(new Hexadecimal('121212121212'));
$clockSequence = 16383;

$uuid = Uuid::uuid6($nodeProvider->getNode(), $clockSequence);

Tip

Version 6 UUIDs generated in ramsey/uuid are instances of UuidV6. Check out
the Ramsey\Uuid\Rfc4122\UuidV6 API documentation to
learn more about what you can do with a UuidV6 instance.

Custom and Random Nodes

In the example above, we provided a
custom node when generating a version 6 UUID. You may also generate random
node values.

To learn more, see the Providing a Custom Node and
Generating a Random Node sections under Version 1: Gregorian Time.

Clock Sequence

In a version 6 UUID, the clock sequence serves the same purpose as in a version
1 UUID. See What’s a Clock Sequence? to learn more.

Version 1-to-6 Conversion

It is possible to convert back-and-forth between version 6 and version 1 UUIDs.

Convert a version 1 UUID to a version 6 UUID

use Ramsey\Uuid\Rfc4122\UuidV1;
use Ramsey\Uuid\Rfc4122\UuidV6;
use Ramsey\Uuid\Uuid;

$uuid1 = Uuid::fromString('3960c5d8-60f8-11ea-bc55-0242ac130003');

if ($uuid1 instanceof UuidV1) {
 $uuid6 = UuidV6::fromUuidV1($uuid1);
}

Convert a version 6 UUID to a version 1 UUID

use Ramsey\Uuid\Rfc4122\UuidV6;
use Ramsey\Uuid\Uuid;

$uuid6 = Uuid::fromString('1ea60f83-960c-65d8-bc55-0242ac130003');

if ($uuid6 instanceof UuidV6) {
 $uuid1 = $uuid6->toUuidV1();
}

Ordered-time to Version 6 Conversion

You may convert UUIDs previously generated and stored using the
ordered-time codec into version 6 UUIDs.

Caution

If you perform this conversion, the bytes and string representation of your
UUIDs will change. This will break any software that expects your
identifiers to be fixed.

Convert an ordered-time codec encoded UUID to a version 6 UUID

use Ramsey\Uuid\Codec\OrderedTimeCodec;
use Ramsey\Uuid\Rfc4122\UuidV1;
use Ramsey\Uuid\Rfc4122\UuidV6;
use Ramsey\Uuid\UuidFactory;

// The bytes of a version 1 UUID previously stored in some datastore
// after encoding to bytes with the OrderedTimeCodec.
$bytes = hex2bin('11ea60faf17c8af6ad23acde48001122');

$factory = new UuidFactory();
$codec = new OrderedTimeCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$orderedTimeUuid = $factory->fromBytes($bytes);

if ($orderedTimeUuid instanceof UuidV1) {
 $uuid6 = UuidV6::fromUuidV1($orderedTimeUuid);
}

Privacy Concerns

Like version 1 UUIDs, version 6 UUIDs use a MAC
address from a local hardware network interface. This means it is possible to
uniquely identify the machine on which a version 6 UUID was created.

If the value provided by the timestamp of a version 6 UUID is important to you,
but you do not wish to expose the interface address of any of your local
machines, see Custom and Random Nodes.

If you do not need an identifier with a node value embedded in it, but you still
need the benefit of a monotonically increasing unique identifier, see
Version 7: Unix Epoch Time.

Version 7: Unix Epoch Time

Note

Version 7, Unix Epoch time UUIDs are a new format of UUID, proposed in an
Internet-Draft under review [https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00#section-5.7] at the IETF. While the draft is still going
through the IETF process, the version 7 format is not expected to change
in any way that breaks compatibility.

ULIDs and Version 7 UUIDs

Version 7 UUIDs are binary-compatible with ULIDs [https://github.com/ulid/spec] (universally unique
lexicographically-sortable identifiers).

Both use a 48-bit timestamp in milliseconds since the Unix Epoch, filling
the rest with random data. Version 7 UUIDs then add the version and variant
bits required by the UUID specification, which reduces the randomness from
80 bits to 74. Otherwise, they are identical.

You may even convert a version 7 UUID to a ULID.
See below for an example.

Version 7 UUIDs solve two problems that have long existed [https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/] with the use of
version 1 UUIDs:

	Scattered database records

	Inability to sort by an identifier in a meaningful way (i.e., insert order)

To overcome these issues, we need the ability to generate UUIDs that are
monotonically increasing.

Version 6 UUIDs provide an excellent solution for
those who need monotonically increasing, sortable UUIDs with the features of
version 1 UUIDs (MAC address and clock sequence), but if those features aren’t
necessary for your application, using a version 6 UUID might be overkill.

Version 7 UUIDs combine random data (like version 4 UUIDs) with a timestamp (in
milliseconds since the Unix Epoch, i.e., 1970-01-01 00:00:00 UTC) to create a
monotonically increasing, sortable UUID that doesn’t have any privacy concerns,
since it doesn’t include a MAC address.

For this reason, implementations should use version 7 UUIDs over versions 1 and
6, if possible.

Generate a version 7, Unix Epoch time UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid7();

printf(
 "UUID: %s\nVersion: %d\nDate: %s\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion(),
 $uuid->getDateTime()->format('r'),
);

This will generate a version 7 UUID and print out its string representation and
the time it was created.

It will look something like this:

UUID: 01833ce0-3486-7bfd-84a1-ad157cf64005
Version: 7
Date: Wed, 14 Sep 2022 16:41:10 +0000

To use an existing date and time to generate a version 7 UUID, you may pass a
\DateTimeInterface instance to the uuid7() method.

Generate a version 7 UUID from an existing date and time

use DateTimeImmutable;
use Ramsey\Uuid\Uuid;

$dateTime = new DateTimeImmutable('@281474976710.655');
$uuid = Uuid::uuid7($dateTime);

printf(
 "UUID: %s\nVersion: %d\nDate: %s\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion(),
 $uuid->getDateTime()->format('r'),
);

Which will print something like this:

UUID: ffffffff-ffff-7964-a8f6-001336ac20cb
Version: 7
Date: Tue, 02 Aug 10889 05:31:50 +0000

Tip

Version 7 UUIDs generated in ramsey/uuid are instances of UuidV7. Check out
the Ramsey\Uuid\Rfc4122\UuidV7 API documentation to learn
more about what you can do with a UuidV7 instance.

Convert a Version 7 UUID to a ULID

As mentioned in the callout above, version 7 UUIDs are binary-compatible with
ULIDs [https://github.com/ulid/spec]. This means you can encode a version 7 UUID using Crockford’s Base 32
algorithm [https://www.crockford.com/base32.html] and it will be a valid ULID, timestamp and all.

Using the third-party library tuupola/base32 [https://packagist.org/packages/tuupola/base32], here’s how we can encode a
version 7 UUID as a ULID. Note that there’s a little bit of work to perform the
conversion, since you’re working with different bases.

Encode a version 7, Unix Epoch time UUID as a ULID

use Ramsey\Uuid\Uuid;
use Tuupola\Base32;

$crockford = new Base32([
 'characters' => Base32::CROCKFORD,
 'padding' => false,
 'crockford' => true,
]);

$uuid = Uuid::uuid7();

// First, we must pad the 16-byte string to 20 bytes
// for proper conversion without data loss.
$bytes = str_pad($uuid->getBytes(), 20, "\x00", STR_PAD_LEFT);

// Use Crockford's Base 32 encoding algorithm.
$encoded = $crockford->encode($bytes);

// That 20-byte string was encoded to 32 characters to avoid loss
// of data. We must strip off the first 6 characters--which are
// all zeros--to get a valid 26-character ULID string.
$ulid = substr($encoded, 6);

printf("ULID: %s\n", $ulid);

This will print something like this:

ULID: 01GCZ05N3JFRKBRWKNGCQZGP44

Caution

Be aware that all version 7 UUIDs may be converted to ULIDs but not all
ULIDs may be converted to UUIDs.

For that matter, all UUIDs of any version may be encoded as ULIDs, but they
will not be monotonically increasing and sortable unless they are version 7
UUIDs. You will also not be able to extract a meaningful timestamp from the
ULID, unless it was converted from a version 7 UUID.

Version 8: Custom

Note

Version 8, custom UUIDs are a new format of UUID, proposed in an
Internet-Draft under review [https://datatracker.ietf.org/doc/html/draft-ietf-uuidrev-rfc4122bis-00#section-5.8] at the IETF. While the draft is still going
through the IETF process, the version 8 format is not expected to change
in any way that breaks compatibility.

Version 8 UUIDs allow applications to create custom UUIDs in an RFC-compatible
way. The only requirement is the version and variant bits must be set according
to the UUID specification. The bytes provided may contain any value according to
your application’s needs. Be aware, however, that other applications may not
understand the semantics of the value.

Warning

The bytes should be a 16-byte octet string, an open blob of data that you
may fill with 128 bits of information. However, bits 48 through 51 will be
replaced with the UUID version field, and bits 64 and 65 will be replaced
with the UUID variant. You must not rely on these bits for your application
needs.

Generate a version 8, custom UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid8("\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa\xbb\xcc\xdd\xee\xff");

printf(
 "UUID: %s\nVersion: %d\n",
 $uuid->toString(),
 $uuid->getFields()->getVersion()
);

This will generate a version 8 UUID and print out its string representation.
It will look something like this:

UUID: 00112233-4455-8677-8899-aabbccddeeff
Version: 8

Nonstandard UUIDs

Outside of RFC 4122 [https://tools.ietf.org/html/rfc4122], other types of UUIDs are in-use, following rules of
their own. Some of these are on their way to becoming accepted standards, while
others have historical reasons for remaining valid today. Still, others are
completely random and do not follow any rules.

For these cases, ramsey/uuid provides a special functionality to handle these
alternate, nonstandard forms.

	Version 6: Reordered Time
	This is a new version of UUID that combines the features of a
version 1 UUID with a monotonically increasing
UUID. For more details, see Version 6: Reordered Time.

	Globally Unique Identifiers (GUIDs)
	A globally unique identifier, or GUID, is often used as a synonym for UUID.
A key difference is the order of the bytes. Any RFC 4122 [https://tools.ietf.org/html/rfc4122] version UUID may
be represented as a GUID. For more details, see Globally Unique Identifiers (GUIDs).

	Other Nonstandard UUIDs
	Sometimes, UUID string or byte representations don’t follow RFC 4122 [https://tools.ietf.org/html/rfc4122].
Rather than reject these identifiers, ramsey/uuid returns them with the
special Nonstandard\Uuid instance type. For more details, see
Other Nonstandard UUIDs.

Version 6: Reordered Time

Attention

This documentation has moved to RFC 4122 UUIDs: Version 6: Reordered
Time.

Version 6 UUIDs have been promoted to the Rfc4122 namespace. While still
in draft form, the version 6 format is not expected to change in any way
that breaks compatibility.

The Ramsey\Uuid\Nonstandard\UuidV6 class is deprecated in
favor of Ramsey\Uuid\Rfc4122\UuidV6.

Globally Unique Identifiers (GUIDs)

Tip

Using these techniques to work with GUIDs is useful if you’re working with
identifiers that have been stored in GUID byte order. For example, this is
the case if working with the UNIQUEIDENTIFIER data type in Microsoft SQL
Server. This is a GUID, stored as a 16-byte binary string. If working
directly with the bytes, you may use the GUID functionality in ramsey/uuid
to properly handle this data type.

According to the Windows Dev Center article on GUID structure [https://docs.microsoft.com/en-us/windows/win32/api/guiddef/ns-guiddef-guid#remarks], “GUIDs are the
Microsoft implementation of the distributed computing environment (DCE)
universally unique identifier.” For all intents and purposes, a GUID string
representation is identical to that of an RFC 4122 [https://tools.ietf.org/html/rfc4122] UUID. For historical
reasons, the byte order is not.

The .NET Framework documentation [https://docs.microsoft.com/en-us/dotnet/api/system.guid.tobytearray#remarks] explains:

Note that the order of bytes in the returned byte array is different from
the string representation of a Guid value. The order of the beginning
four-byte group and the next two two-byte groups is reversed, whereas the
order of the last two-byte group and the closing six-byte group is the same.

This is best explained by example.

Decoding a GUID from byte representation

use Ramsey\Uuid\FeatureSet;
use Ramsey\Uuid\UuidFactory;

// The bytes of a GUID previously stored in some datastore.
$guidBytes = hex2bin('0eab93fc9ec9584b975e9c5e68c53624');

$useGuids = true;
$featureSet = new FeatureSet($useGuids);
$factory = new UuidFactory($featureSet);

$guid = $factory->fromBytes($guidBytes);

printf(
 "Class: %s\nGUID: %s\nVersion: %d\nBytes: %s\n",
 get_class($guid),
 $guid->toString(),
 $guid->getFields()->getVersion(),
 bin2hex($guid->getBytes())
);

This transforms the bytes of a GUID, as represented by $guidBytes, into a
Ramsey\Uuid\Guid\Guid instance and prints out some details about
it. It looks something like this:

Class: Ramsey\Uuid\Guid\Guid
GUID: fc93ab0e-c99e-4b58-975e-9c5e68c53624
Version: 4
Bytes: 0eab93fc9ec9584b975e9c5e68c53624

Note the difference between the string GUID and the bytes. The bytes are
arranged like this:

0e ab 93 fc 9e c9 58 4b 97 5e 9c 5e 68 c5 36 24

In an RFC 4122 [https://tools.ietf.org/html/rfc4122] UUID, the bytes are stored in the same order as you see
presented in the string representation. This is often called network byte
order, or big-endian order. In a GUID, the order of the bytes are reversed
in each grouping for the first 64 bits and stored in little-endian order. The
remaining 64 bits are stored in network byte order. See Endianness to learn more.

Caution

The bytes themselves do not indicate their order. If you decode GUID bytes
as a UUID or UUID bytes as a GUID, you will get the wrong values. However,
you can always create a GUID or UUID from the same string value; the bytes
for each will be in a different order, even though the string is the same.

The key is to know ahead of time in what order the bytes are stored. Then,
you will be able to decode them using the correct approach.

Converting GUIDs to UUIDs

Continuing from the example, Decoding a GUID from byte representation, we
can take the GUID string representation and convert it into a standard UUID.

Convert a GUID to a UUID

$uuid = Uuid::fromString($guid->toString());

printf(
 "Class: %s\nUUID: %s\nVersion: %d\nBytes: %s\n",
 get_class($uuid),
 $uuid->toString(),
 $uuid->getFields()->getVersion(),
 bin2hex($uuid->getBytes())
);

Because the GUID was a version 4, random UUID, this creates an instance of
Ramsey\Uuid\Rfc4122\UuidV4 from the GUID string and prints out a
few details about it. It looks something like this:

Class: Ramsey\Uuid\Rfc4122\UuidV4
UUID: fc93ab0e-c99e-4b58-975e-9c5e68c53624
Version: 4
Bytes: fc93ab0ec99e4b58975e9c5e68c53624

Note how the UUID string is identical to the GUID string. However, the byte
order is different, since they are in big-endian order. The bytes are now
arranged like this:

fc 93 ab 0e c9 9e 4b 58 97 5e 9c 5e 68 c5 36 24

Endianness

Big-endian and little-endian refer to the ordering of bytes in a multi-byte
number. Big-endian order places the most significant byte first, followed by
the other bytes in descending order. Little-endian order places the least
significant byte first, followed by the other bytes in ascending order.

Take the hexadecimal number 0x1234, for example. In big-endian order,
the bytes are stored as 12 34, and in little-endian order, they are
stored as 34 12. In either case, the number is still 0x1234.

Networking protocols usually use big-endian ordering, while computer
processor architectures often use little-endian ordering.
The terms originated in Jonathan Swift’s Gulliver’s Travels, where the
Lilliputians argue over which end of a hard-boiled egg is the best end to
crack.

Other Nonstandard UUIDs

Sometimes, you might encounter a string that looks like a UUID but doesn’t
follow the RFC 4122 [https://tools.ietf.org/html/rfc4122] specification. Take this string, for example:

d95959bc-2ff5-43eb-fccd-14883ba8f174

At a glance, this looks like a valid UUID, but the variant bits don’t match RFC
4122. Instead of throwing a validation exception, ramsey/uuid will assume this
is a UUID, since it fits the format and has 128 bits, but it will represent it
as a Ramsey\Uuid\Nonstandard\Uuid.

Create an instance of Nonstandard\Uuid from a non-RFC 4122 UUID

use Ramsey\Uuid\Uuid;

$uuid = Uuid::fromString('d95959bc-2ff5-43eb-fccd-14883ba8f174');

printf(
 "Class: %s\nUUID: %s\nVersion: %d\nVariant: %s\n",
 get_class($uuid),
 $uuid->toString(),
 $uuid->getFields()->getVersion(),
 $uuid->getFields()->getVariant()
);

This will create a Nonstandard\Uuid from the given string and print out a few
details about it. It will look something like this:

Class: Ramsey\Uuid\Nonstandard\Uuid
UUID: d95959bc-2ff5-43eb-fccd-14883ba8f174
Version: 0
Variant: 7

Note that the version is 0. Since the variant is 7, and there is no
formal specification for this variant of UUID, ramsey/uuid has no way of knowing
what type of UUID this is.

Using In a Database

Tip

ramsey/uuid-doctrine [https://github.com/ramsey/uuid-doctrine] allows the use of ramsey/uuid as a Doctrine field
type [https://www.doctrine-project.org/projects/doctrine-dbal/en/2.10/reference/types.html]. If you use Doctrine, it’s a great option for working with UUIDs and
databases.

There are several strategies to consider when working with UUIDs in a database.
Among these are whether to store the string representation or bytes and whether
the UUID column should be treated as a primary key. We’ll discuss a few of these
approaches here, but the final decision on how to use UUIDs in a database is up
to you since your needs will be different from those of others.

Note

All database code examples in this section assume the use of MariaDB [https://mariadb.org] and
PHP Data Objects (PDO) [https://www.php.net/pdo]. If using a different database engine or
connection library, your code will differ, but the general concepts should
remain the same.

Storing As a String

Perhaps the easiest way to store a UUID to a database is to create a char(36)
column and store the UUID as a string. When stored as a string, UUIDs require
no special treatment in SQL statements or when displaying them.

The primary drawback is the size. At 36 characters, UUIDs can take up a lot of
space, and when handling a lot of data, this can add up.

Create a table with a column for UUIDs

CREATE TABLE `notes` (
 `uuid` char(36) NOT NULL,
 `notes` text NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Using this database table, we can store the string UUID using code similar to
this (assume some of the variables in this example have been set beforehand):

Store a string UUID to the uuid column

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

$dbh = new PDO($dsn, $username, $password);

$sth = $dbh->prepare('
 INSERT INTO notes (
 uuid,
 notes
) VALUES (
 :uuid,
 :notes
)
');

$sth->execute([
 ':uuid' => $uuid->toString(),
 ':notes' => $notes,
]);

Storing As Bytes

In the previous example, we saw how
to store the string representation of a UUID to a char(36) column. As
discussed, the primary drawback is the size. However, if we store the UUID in
byte form, we only need a char(16) column, saving over half the space.

The primary drawback with this approach is ease-of-use. Since the UUID bytes are
stored in the database, querying and selecting data becomes more difficult.

Create a table with a column for UUID bytes

CREATE TABLE `notes` (
 `uuid` char(16) NOT NULL,
 `notes` text NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Using this database table, we can store the UUID bytes using code similar to
this (again, assume some of the variables in this example have been set
beforehand):

Store UUID bytes to the uuid column

$sth->execute([
 ':uuid' => $uuid->getBytes(),
 ':notes' => $notes,
]);

Now, when we SELECT the records from the database, we will need to convert
the notes.uuid column to a ramsey/uuid object, so that we are able to use
it.

Covert database UUID bytes to UuidInterface instance

use Ramsey\Uuid\Uuid;

$uuid = Uuid::uuid4();

$dbh = new PDO($dsn, $username, $password);

$sth = $dbh->prepare('SELECT uuid, notes FROM notes');
$sth->execute();

foreach ($sth->fetchAll() as $record) {
 $uuid = Uuid::fromBytes($record['uuid']);

 printf(
 "UUID: %s\nNotes: %s\n\n",
 $uuid->toString(),
 $record['notes']
);
}

We’ll also need to query the database using the bytes.

Look-up the record from the database, using the UUID bytes

use Ramsey\Uuid\Uuid;

$uuid = Uuid::fromString('278198d3-fa96-4833-abab-82f9e67f4712');

$dbh = new PDO($dsn, $username, $password);

$sth = $dbh->prepare('
 SELECT uuid, notes
 FROM notes
 WHERE uuid = :uuid
');

$sth->execute([
 ':uuid' => $uuid->getBytes(),
]);

$record = $sth->fetch();

if ($record) {
 $uuid = Uuid::fromBytes($record['uuid']);

 printf(
 "UUID: %s\nNotes: %s\n\n",
 $uuid->toString(),
 $record['notes']
);
}

Using As a Primary Key

In the previous examples, we didn’t use the UUID as a primary key, but it’s
logical to use the notes.uuid field as a primary key. There’s nothing wrong
with this approach, but there are a couple of points to consider:

	InnoDB stores data in the primary key order

	All the secondary keys also contain the primary key (in InnoDB)

We’ll deal with the first point in the section, Insertion Order and Sorting. For the
second point, if you are using the string version of the UUID (i.e.,
char(36)), then not only will the primary key be large and take up a lot of
space, but every secondary key that uses that primary key will also be much
larger.

For this reason, if you choose to use UUIDs as primary keys, it might be worth
the drawbacks to use UUID bytes (i.e., char(16)) instead of the string
representation (see Storing As Bytes).

Hint

If not using InnoDB with MySQL or MariaDB, consult your database engine
documentation to find whether it also has similar properties that will
factor into your use of UUIDs.

Using As a Unique Key

Instead of using UUIDs as a primary key, you may choose to
use an AUTO_INCREMENT column with the int unsigned data type as a
primary key, while using a char(36) for UUIDs and setting a UNIQUE KEY
on this column. This will aid in lookups while helping keep your secondary keys
small.

Use an auto-incrementing column as primary key, with UUID as a unique key

CREATE TABLE `notes` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `uuid` char(36) NOT NULL,
 `notes` text NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `notes_uuid_uk` (`uuid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insertion Order and Sorting

UUID versions 1, 2, 3, 4, and 5 are not monotonically increasing. If using
these versions as primary keys, the inserts will be random, and the data will be
scattered on disk (for InnoDB). Over time, as the database size grows, lookups
will become slower and slower.

Tip

See Percona’s “Storing UUID Values in MySQL [https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/]” post, for more details on
the performance of UUIDs as primary keys.

To minimize these problems, two solutions have been devised:

	Version 6: Reordered Time UUIDs

	Version 7: Unix Epoch Time UUIDs

Note

We previously recommended the use of the timestamp-first COMB or ordered-time codecs to solve these problems. However,
UUID versions 6 and 7 were defined to provide these solutions in a
standardized way.

Customization

ramsey/uuid offers a variety of ways to modify the standard behavior of the
library through dependency injection. Using FeatureSet [https://github.com/ramsey/uuid/blob/4.x/src/FeatureSet.php], UuidFactory [https://github.com/ramsey/uuid/blob/4.x/src/UuidFactory.php], and
Uuid::setFactory(), you are able
to replace just about any builder [https://github.com/ramsey/uuid/tree/4.x/src/Builder], codec [https://github.com/ramsey/uuid/tree/4.x/src/Codec], converter [https://github.com/ramsey/uuid/tree/4.x/src/Converter], generator [https://github.com/ramsey/uuid/tree/4.x/src/Generator],
provider [https://github.com/ramsey/uuid/tree/4.x/src/Provider], and more.

	Ordered-time Codec
	The ordered-time codec exists to rearrange the bytes of a version 1,
Gregorian time UUID so that the timestamp portion of the UUID is
monotonically increasing. To learn more, see Ordered-time Codec.

	Timestamp-first COMB Codec
	The timestamp-first COMB codec replaces part of a version 4, random UUID
with a timestamp, so that the UUID becomes monotonically increasing. To
learn more, see Timestamp-first COMB Codec.

	Using a Custom Calculator
	It’s possible to replace the default calculator ramsey/uuid uses. If your
requirements require a different solution for making calculations, see
Using a Custom Calculator.

	Using a Custom Validator
	If your requirements require a different level of validation or a different
UUID format, you may replace the default validator. See
Using a Custom Validator, to learn more.

	Replace the Default Factory
	Not only are you able to inject alternate builders, codecs, etc. into the
factory and use the factory to generate UUIDs, you may also replace the
global, static factory used by the static methods on the Uuid class. To find
out how, see Replace the Default Factory.

Ordered-time Codec

Attention

Version 6, reordered time UUIDs are a new version
of UUID that eliminate the need for the ordered-time codec. If you aren’t
currently using the ordered-time codec, and you need time-based, sortable
UUIDs, consider using version 6 UUIDs.

UUIDs arrange their bytes according to the standard recommended by RFC 4122 [https://tools.ietf.org/html/rfc4122].
Unfortunately, this means the bytes aren’t in an arrangement that supports
sorting by creation time or an otherwise incrementing value. The Percona
article, “Storing UUID Values in MySQL [https://www.percona.com/blog/2014/12/19/store-uuid-optimized-way/],” explains at length the problems this
can cause. It also recommends a solution: the ordered-time UUID.

RFC 4122 version 1, Gregorian time UUIDs rearrange the bytes of the time fields
so that the lowest bytes appear first, the middle bytes are next, and the
highest bytes come last. Logical sorting is not possible with this arrangement.

An ordered-time UUID is a version 1 UUID with the time fields arranged in
logical order so that the UUIDs can be sorted by creation time. These UUIDs are
monotonically increasing, each one coming after the previously-created one, in
a proper sort order.

Use the ordered-time codec to generate a version 1 UUID

use Ramsey\Uuid\Codec\OrderedTimeCodec;
use Ramsey\Uuid\UuidFactory;

$factory = new UuidFactory();
$codec = new OrderedTimeCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$orderedTimeUuid = $factory->uuid1();

printf(
 "UUID: %s\nVersion: %d\nDate: %s\nNode: %s\nBytes: %s\n",
 $orderedTimeUuid->toString(),
 $orderedTimeUuid->getFields()->getVersion(),
 $orderedTimeUuid->getDateTime()->format('r'),
 $orderedTimeUuid->getFields()->getNode()->toString(),
 bin2hex($orderedTimeUuid->getBytes())
);

This will use the ordered-time codec to generate a version 1 UUID and will print
out details about the UUID similar to these:

UUID: 593200aa-61ae-11ea-bbf2-0242ac130003
Version: 1
Date: Mon, 09 Mar 2020 02:33:23 +0000
Node: 0242ac130003
Bytes: 11ea61ae593200aabbf20242ac130003

Attention

Only the byte representation is rearranged. The string representation
follows the format of a standard version 1 UUID. This means only the byte
representation of an ordered-time codec encoded UUID may be used for
sorting, such as with database results.

To store the byte representation to a database field, see
Storing As Bytes.

Hint

If you use this codec and store the bytes of the UUID to the database, as
recommended above, you will need to use this codec to decode the bytes, as
well. Otherwise, the UUID string value will be incorrect.

// Using a factory configured with the OrderedTimeCodec, as shown above.
$orderedTimeUuid = $factory->fromBytes($bytes);

Timestamp-first COMB Codec

Attention

Version 7, Unix Epoch time UUIDs are a new version
of UUID that eliminate the need for the timestamp-first COMB codec. If you
aren’t currently using the timestamp-first COMB codec, and you need
time-based, sortable UUIDs, consider using version 7 UUIDs.

Version 4, random UUIDs are doubly problematic when it
comes to sorting and storing to databases (see Insertion Order and Sorting), since
their values are random, and there is no timestamp associated with them that may
be rearranged, like with the ordered-time codec. In 2002, Jimmy Nilsson recognized this problem
with random UUIDs and proposed a solution he called “COMBs” (see “The Cost of
GUIDs as Primary Keys [https://www.informit.com/articles/printerfriendly/25862]”).

So-called because they combine random bytes with a timestamp, the
timestamp-first COMB codec replaces the first 48 bits of a version 4, random
UUID with a Unix timestamp and microseconds, creating an identifier that can be
sorted by creation time. These UUIDs are monotonically increasing, each one
coming after the previously-created one, in a proper sort order.

Use the timestamp-first COMB codec to generate a version 4 UUID

use Ramsey\Uuid\Codec\TimestampFirstCombCodec;
use Ramsey\Uuid\Generator\CombGenerator;
use Ramsey\Uuid\UuidFactory;

$factory = new UuidFactory();
$codec = new TimestampFirstCombCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$factory->setRandomGenerator(new CombGenerator(
 $factory->getRandomGenerator(),
 $factory->getNumberConverter()
));

$timestampFirstComb = $factory->uuid4();

printf(
 "UUID: %s\nVersion: %d\nBytes: %s\n",
 $timestampFirstComb->toString(),
 $timestampFirstComb->getFields()->getVersion(),
 bin2hex($timestampFirstComb->getBytes())
);

This will use the timestamp-first COMB codec to generate a version 4 UUID with
the timestamp replacing the first 48 bits and will print out details about the
UUID similar to these:

UUID: 9009ebcc-cd99-4b5f-90cf-9155607d2de9
Version: 4
Bytes: 9009ebcccd994b5f90cf9155607d2de9

Note that the bytes are in the same order as the string representation. Unlike
the ordered-time codec, the
timestamp-first COMB codec affects both the string representation and the byte
representation. This means either the string UUID or the bytes may be stored to
a datastore and sorted. To learn more, see Using In a Database.

Using a Custom Calculator

By default, ramsey/uuid uses brick/math [https://github.com/brick/math] as its internal calculator. However,
you may change the calculator, if your needs require something else.

To swap the default calculator with your custom one, first make an adapter that
wraps your custom calculator and implements
Ramsey\Uuid\Math\CalculatorInterface. This might look
something like this:

Create a custom calculator wrapper that implements CalculatorInterface

namespace MyProject;

use Other\OtherCalculator;
use Ramsey\Uuid\Math\CalculatorInterface;
use Ramsey\Uuid\Type\Integer as IntegerObject;
use Ramsey\Uuid\Type\NumberInterface;

class MyUuidCalculator implements CalculatorInterface
{
 private $internalCalculator;

 public function __construct(OtherCalculator $customCalculator)
 {
 $this->internalCalculator = $customCalculator;
 }

 public function add(NumberInterface $augend, NumberInterface ...$addends): NumberInterface
 {
 $value = $augend->toString();

 foreach ($addends as $addend) {
 $value = $this->internalCalculator->plus($value, $addend->toString());
 }

 return new IntegerObject($value);
 }

 /* ... Class truncated for brevity ... */

}

The easiest way to use your custom calculator wrapper is to instantiate a new
FeatureSet, set the calculator on it, and pass the FeatureSet into a new
UuidFactory. Using the factory, you may then generate and work with UUIDs, using
your custom calculator.

Use your custom calculator wrapper when working with UUIDs

use MyProject\MyUuidCalculator;
use Other\OtherCalculator;
use Ramsey\Uuid\FeatureSet;
use Ramsey\Uuid\UuidFactory;

$otherCalculator = new OtherCalculator();
$myUuidCalculator = new MyUuidCalculator($otherCalculator);

$featureSet = new FeatureSet();
$featureSet->setCalculator($myUuidCalculator);

$factory = new UuidFactory($featureSet);

$uuid = $factory->uuid1();

Using a Custom Validator

By default, ramsey/uuid validates UUID strings with the lenient validator
Ramsey\Uuid\Validator\GenericValidator. This validator ensures
the string is 36 characters, has the dashes in the correct places, and uses only
hexadecimal values. It does not ensure the string is of the RFC 4122 variant or
contains a valid version.

The validator Ramsey\Uuid\Rfc4122\Validator validates UUID
strings to ensure they match the RFC 4122 variant and contain a valid version.
Since it is not enabled by default, you will need to configure ramsey/uuid to
use it, if you want stricter validation.

Set an alternate validator to use for Uuid::isValid()

use Ramsey\Uuid\Rfc4122\Validator as Rfc4122Validator;
use Ramsey\Uuid\Uuid;
use Ramsey\Uuid\UuidFactory;

$factory = new UuidFactory();
$factory->setValidator(new Rfc4122Validator());

Uuid::setFactory($factory);

if (!Uuid::isValid('2bfb5006-087b-9553-5082-e8f39337ad29')) {
 echo "This UUID is not valid!\n";
}

Tip

If you want to use your own validation, create a class that implements
Ramsey\Uuid\Validator\ValidatorInterface and use the
same method to set your validator on the factory.

Replace the Default Factory

In many of the examples throughout this documentation, we’ve seen how to
configure the factory and then use that factory to generate and work with UUIDs.

For example:

Configure the factory and use it to generate a version 1 UUID

use Ramsey\Uuid\Codec\OrderedTimeCodec;
use Ramsey\Uuid\UuidFactory;

$factory = new UuidFactory();
$codec = new OrderedTimeCodec($factory->getUuidBuilder());

$factory->setCodec($codec);

$orderedTimeUuid = $factory->uuid1();

When doing this, the default behavior of ramsey/uuid is left intact. If we call
Uuid::uuid1() to generate a version 1 UUID after configuring the factory as
shown above, it won’t use OrderedTimeCodec
to generate the UUID.

The behavior differs between $factory->uuid1() and Uuid::uuid1()

$orderedTimeUuid = $factory->uuid1();

printf(
 "UUID: %s\nBytes: %s\n\n",
 $orderedTimeUuid->toString(),
 bin2hex($orderedTimeUuid->getBytes())
);

$uuid = Uuid::uuid1();

printf(
 "UUID: %s\nBytes: %s\n\n",
 $uuid->toString(),
 bin2hex($uuid->getBytes())
);

In this example, we print out details for two different UUIDs. The first was
generated with the OrderedTimeCodec using
$factory->uuid1(). The second was generated using Uuid::uuid1(). It
looks something like this:

UUID: 2ff06620-6251-11ea-9791-0242ac130003
Bytes: 11ea62512ff0662097910242ac130003

UUID: 2ff09730-6251-11ea-ba64-0242ac130003
Bytes: 2ff09730625111eaba640242ac130003

Notice the arrangement of the bytes. The first set of bytes has been rearranged,
according to the ordered-time codec rules, but the second set of bytes remains
in the same order as the UUID string.

Configuring the factory does not change the default behavior.

If we want to change the default behavior, we must replace the factory used
by the Uuid static methods, and we can do this using the
Uuid::setFactory() static method.

Replace the factory to globally affect Uuid behavior

Uuid::setFactory($factory);

$uuid = Uuid::uuid1();

Now, every time we call Uuid::uuid(),
ramsey/uuid will use the factory configured with the OrderedTimeCodec to generate version 1 UUIDs.

Warning

Calling Uuid::setFactory() to
replace the factory will change the behavior of Uuid no matter where it is
used, so keep this in mind when replacing the factory. If you replace the
factory deep inside a method somewhere, any later code that calls a static
method on Ramsey\Uuid\Uuid will use the new factory to
generate UUIDs.

Testing With UUIDs

One problem with the use of final is the inability to create a mock object [https://en.wikipedia.org/wiki/Mock_object]
to use in tests. However, the following techniques should help with testing.

Tip

To learn why ramsey/uuid uses final, take a look at Why does ramsey/uuid use final?.

Inject a UUID of a Specific Type

Let’s say we have a method that uses a type hint for UuidV1.

public function tellTime(UuidV1 $uuid): string
{
 return $uuid->getDateTime()->format('Y-m-d H:i:s');
}

Since this method uses UuidV1 as the type hint, we’re not able to pass another
object that implements UuidInterface, and we cannot extend or mock UuidV1, so
how do we test this?

One way is to use Uuid::uuid1() to
create a regular UuidV1 instance and pass it.

public function testTellTime(): void
{
 $uuid = Uuid::uuid1();
 $myObj = new MyClass();

 $this->assertIsString($myObj->tellTime($uuid));
}

This might satisfy our testing needs if we only want to assert that the method
returns a string. If we want to test for a specific string, we can do that, too,
by generating a UUID ahead of time and using it as a known value.

public function testTellTime(): void
{
 // We generated this version 1 UUID ahead of time and know the
 // exact date and time it contains, so we can use it to test the
 // return value of our method.
 $uuid = Uuid::fromString('177ef0d8-6630-11ea-b69a-0242ac130003');
 $myObj = new MyClass();

 $this->assertSame('2020-03-14 20:12:12', $myObj->tellTime($uuid));
}

Note

These examples assume the use of PHPUnit [https://phpunit.de] for tests. The concepts will
work no matter what testing framework you use.

Returning Specific UUIDs From a Static Method

Sometimes, rather than pass UUIDs as method arguments, we might call the static
methods on the Uuid class from inside the method we want to test. This can be
tricky to test.

public function tellTime(): string
{
 $uuid = Uuid::uuid1();

 return $uuid->getDateTime()->format('Y-m-d H:i:s');
}

We can call this in a test and assert that it returns a string, but we can’t
return a specific UUID value from the static method call — or can we?

We can do this by overriding the default factory.

First, we create our own factory class for testing. In this example, we extend
UuidFactory, but you may create your own separate factory class for testing, as
long as you implement Ramsey\Uuid\UuidFactoryInterface.

namespace MyPackage;

use Ramsey\Uuid\UuidFactory;
use Ramsey\Uuid\UuidInterface;

class MyTestUuidFactory extends UuidFactory
{
 public $uuid1;

 public function uuid1($node = null, ?int $clockSeq = null): UuidInterface
 {
 return $this->uuid1;
 }
}

Now, from our tests, we can replace the default factory with our new factory,
and we can even change the value returned by the uuid1() method for our tests.

/**
 * @runInSeparateProcess
 * @preserveGlobalState disabled
 */
public function testTellTime(): void
{
 $factory = new MyTestUuidFactory();
 Uuid::setFactory($factory);

 $myObj = new MyClass();

 $factory->uuid1 = Uuid::fromString('177ef0d8-6630-11ea-b69a-0242ac130003');
 $this->assertSame('2020-03-14 20:12:12', $myObj->tellTime());

 $factory->uuid1 = Uuid::fromString('13814000-1dd2-11b2-9669-00007ffffffe');
 $this->assertSame('1970-01-01 00:00:00', $myObj->tellTime());
}

Attention

The factory is a static property on the Uuid class. By replacing it like
this, all uses of the Uuid class after this point will continue to use the
new factory. This is why we must run the test in a separate process.
Otherwise, this could cause other tests to fail.

Running tests in separate processes can significantly slow down your tests,
so try to use this technique sparingly, and if possible, pass your
dependencies to your objects, rather than creating (or fetching them) from
within. This makes testing easier.

Mocking UuidInterface

Another technique for testing with UUIDs is to mock
UuidInterface.

Consider a method that accepts a UuidInterface.

public function tellTime(UuidInterface $uuid): string
{
 return $uuid->getDateTime()->format('Y-m-d H:i:s');
}

We can mock UuidInterface, passing that mocked value into this method. Then, we
can make assertions about what methods were called on the mock object. In the
following example test, we don’t care whether the return value matches an
actual date format. What we care about is that the methods on the UuidInterface
object were called.

public function testTellTime(): void
{
 $dateTime = Mockery::mock(DateTime::class);
 $dateTime->expects()->format('Y-m-d H:i:s')->andReturn('a test date');

 $uuid = Mockery::mock(UuidInterface::class, [
 'getDateTime' => $dateTime,
]);

 $myObj = new MyClass();

 $this->assertSame('a test date', $myObj->tellTime($uuid));
}

Note

One of my favorite mocking libraries is Mockery [https://github.com/mockery/mockery], so that’s what I use in
these examples. However, other mocking libraries exist, and PHPUnit provides
built-in mocking capabilities.

Upgrading ramsey/uuid

	Version 3 to 4

	Version 2 to 3

Version 3 to 4

I’ve made great efforts to ensure that the upgrade experience for most will be
seamless and uneventful. However, no matter the degree to which you use
ramsey/uuid (customized or unchanged), there are a number of things to be aware
of as you upgrade your code to use version 4.

Tip

These are the changes that are most likely to affect you. For a full list of
changes, take a look at the 4.0.0 changelog [https://github.com/ramsey/uuid/releases/tag/4.0.0].

What’s New?

There are a lot of new features in ramsey/uuid! Here are a few of them:

	Support version 6 UUIDs.

	Support version 2 (DCE Security) UUIDs.

	Add classes to represent each version of RFC 4122 UUID. When generating new
UUIDs or creating UUIDs from existing strings, bytes, or integers, if the UUID
is an RFC 4122 variant, one of these instances will be returned:

	Rfc4122\UuidV1

	Rfc4122\UuidV2

	Rfc4122\UuidV3

	Rfc4122\UuidV4

	Rfc4122\UuidV5

	Rfc4122\NilUuid

	Add classes to represent version 6 UUIDs, GUIDs, and nonstandard
(non-RFC 4122 variants) UUIDs:

	Nonstandard\UuidV6

	Nonstandard\Uuid

	Guid\Guid

	Add Uuid::fromDateTime() to
create version 1 UUIDs from instances of DateTimeInterface.

What’s Changed?

Attention

ramsey/uuid version 4 requires PHP 7.2 or later.

Quite a bit has changed, but much remains familiar. Unless you’ve changed the
behavior of ramsey/uuid through custom codecs, providers, generators, etc., the
standard functionality and API found in version 3 will not differ much.

Here are the highlights:

	ramsey/uuid now works on 32-bit and 64-bit systems, with no degradation in
functionality! All Degraded* classes are deprecated and no longer used;
they’ll go away in ramsey/uuid version 5.

	Pay attention to the return types for the static methods on the Uuid
class. They’ve changed slightly, but this won’t affect you if your type hints
use UuidInterface.

	The return types for three methods
defined on UuidInterface have
changed, breaking backwards compatibility. Take note and update your code.

	There are a number of deprecations.
These shouldn’t affect you now, but please take a look at the recommendations
and update your code soon. These will go away in ramsey/uuid version 5.

	ramsey/uuid now throws custom exceptions for everything. The exception UnsatisfiedDependencyException no
longer exists.

	If you customize ramsey/uuid at all by implementing the interfaces, take a
look at the interface and
constructor changes and update your
code.

Tip

If you maintain a public project that uses ramsey/uuid version 3 and you
find that your code does not require any changes to upgrade to version
4, consider using the following version constraint in your project’s
composer.json file:

composer require ramsey/uuid:"^3 || ^4"

This will allow any downstream users [https://en.wikipedia.org/wiki/Downstream_(software_development)] of your project who aren’t ready to
upgrade to version 4 the ability to continue using your project while
deciding on an appropriate upgrade schedule.

If your downstream users do not specify ramsey/uuid as a dependency, and
they use functionality specific to version 3, they may need to update their
own Composer dependencies to use ramsey/uuid ^3 to avoid using version 4.

Uuid Static Methods

All the static methods on the Uuid class
continue to work as they did in version 3, with this slight change: they now
return more-specific types, all of which implement the new interface
Rfc4122\UuidInterface,
which implements the familiar interface UuidInterface.

If your type hints are for UuidInterface, then you should not require any changes.

Return types for Uuid static methods

	Method

	3.x Returned

	4.x Returns

	Uuid::uuid1()

	Uuid

	Rfc4122\UuidV1

	Uuid::uuid3()

	Uuid

	Rfc4122\UuidV3

	Uuid::uuid4()

	Uuid

	Rfc4122\UuidV4

	Uuid::uuid5()

	Uuid

	Rfc4122\UuidV5

Uuid::fromString(),
Uuid::fromBytes(), and
Uuid::fromInteger() all return
an appropriate more-specific type, based on the input value. If the input value
is a version 1 UUID, for example, the return type will be an
Rfc4122\UuidV1. If the input looks
like a UUID or is a 128-bit number, but it doesn’t validate as an RFC 4122 UUID,
the return type will be a Nonstandard\Uuid. These return types implement
UuidInterface. If using this as
a type hint, you shouldn’t need to make any changes.

Changed Return Types

The following UuidInterface
method return types have changed in version 4 and you will need to update your
code, if you use these methods.

Changed UuidInterface method return types

	Method

	3.x Returned

	4.x Returns

	UuidInterface::getFields()

	array

	Rfc4122\FieldsInterface

	UuidInterface::getHex()

	string

	Type\Hexadecimal

	UuidInterface::getInteger()

	mixed 1

	Type\Integer

In version 3, the following Uuid methods
return int, string, or Moontoast\Math\BigNumber, depending on the
environment. In version 4, they all return numeric string values for the
sake of consistency. These methods are also deprecated and will be removed in version 5.

	getClockSeqHiAndReserved()

	getClockSeqLow()

	getClockSequence()

	getLeastSignificantBits()

	getMostSignificantBits()

	getNode()

	getTimeHiAndVersion()

	getTimeLow()

	getTimeMid()

	getTimestamp()

Deprecations

UuidInterface

The following UuidInterface
methods are deprecated, but upgrading to version 4 should not cause any problems
if using these methods. You are encouraged to update your code according to the
recommendations, though, since these methods will go away in version 5.

Deprecated UuidInterface methods

	Deprecated Method

	Update To

	getDateTime()

	Use getDateTime() on UuidV1, UuidV2, or UuidV6

	getClockSeqHiAndReservedHex()

	getFields()->getClockSeqHiAndReserved()->toString()

	getClockSeqLowHex()

	getFields()->getClockSeqLow()->toString()

	getClockSequenceHex()

	getFields()->getClockSeq()->toString()

	getFieldsHex()

	getFields() 2

	getLeastSignificantBitsHex()

	substr($uuid->getHex()->toString(), 0, 16)

	getMostSignificantBitsHex()

	substr($uuid->getHex()->toString(), 16)

	getNodeHex()

	getFields()->getNode()->toString()

	getNumberConverter()

	This method has no replacement; plan accordingly.

	getTimeHiAndVersionHex()

	getFields()->getTimeHiAndVersion()->toString()

	getTimeLowHex()

	getFields()->getTimeLow()->toString()

	getTimeMidHex()

	getFields()->getTimeMid()->toString()

	getTimestampHex()

	getFields()->getTimestamp()->toString()

	getUrn()

	Ramsey\Uuid\Rfc4122\UuidInterface::getUrn

	getVariant()

	getFields()->getVariant()

	getVersion()

	getFields()->getVersion()

Uuid

Uuid as an instantiable class is deprecated.
In ramsey/uuid version 5, its constructor will be private, and the class
will be final. For more information, see Why does ramsey/uuid use final?

Note

Uuid is being replaced by more-specific
concrete classes, such as:

	Rfc4122\UuidV1

	Rfc4122\UuidV3

	Rfc4122\UuidV4

	Rfc4122\UuidV5

	Nonstandard\Uuid

However, the Uuid class isn’t going away.
It will still hold common constants and static methods.

	Uuid::UUID_TYPE_IDENTIFIER is deprecated. Use
Uuid::UUID_TYPE_DCE_SECURITY instead.

	Uuid::VALID_PATTERN is deprecated. Use the following instead:

use Ramsey\Uuid\Validator\GenericValidator;
use Ramsey\Uuid\Rfc4122\Validator as Rfc4122Validator;

$genericPattern = (new GenericValidator())->getPattern();
$rfc4122Pattern = (new Rfc4122Validator())->getPattern();

The following Uuid methods are deprecated. If
using these methods, you shouldn’t have any problems on version 4, but you are
encouraged to update your code, since they will go away in version 5.

	getClockSeqHiAndReserved()

	getClockSeqLow()

	getClockSequence()

	getLeastSignificantBits()

	getMostSignificantBits()

	getNode()

	getTimeHiAndVersion()

	getTimeLow()

	getTimeMid()

	getTimestamp()

Hint

There are no direct replacements for these methods. In ramsey/uuid version
3, they returned int or Moontoast\Math\BigNumber values, depending
on the environment. To update your code, you should use the recommended
alternates listed in Deprecations: UuidInterface, combined with the
arbitrary-precision mathematics library of your choice (e.g., brick/math [https://github.com/brick/math],
gmp [https://www.php.net/gmp], bcmath [https://www.php.net/bcmath], etc.).

Using brick/math to convert a node to a string integer

use Brick\Math\BigInteger;

$node = BigInteger::fromBase($uuid->getFields()->getNode()->toString(), 16);

Interface Changes

For those who customize ramsey/uuid by implementing the interfaces provided,
there are a few breaking changes to note.

Hint

Most existing methods on interfaces have type hints added to them. If you
implement any interfaces, please be aware of this and update your classes.

UuidInterface

	Method

	Description

	__toString()

	New method; returns string

	getDateTime()

	Deprecated; now returns DateTimeInterface [https://www.php.net/datetimeinterface]

	getFields()

	Used to return array; now returns Rfc4122\FieldsInterface

	getHex()

	Used to return string; now returns Type\Hexadecimal

	getInteger()

	New method; returns Type\Integer

UuidFactoryInterface

	Method

	Description

	uuid2()

	New method; returns Rfc4122\UuidV2

	uuid6()

	New method; returns Nonstandard\UuidV6

	fromDateTime()

	New method; returns UuidInterface

	fromInteger()

	Changed to accept only strings

	getValidator()

	New method; returns UuidInterface

Builder\UuidBuilderInterface

	Method

	Description

	build()

	The second parameter used to accept array $fields; now accepts string $bytes

Converter\TimeConverterInterface

	Method

	Description

	calculateTime()

	Used to return string[]; now returns Type\Hexadecimal

	convertTime()

	New method; returns Type\Time

Provider\TimeProviderInterface

	Method

	Description

	currentTime()

	Method removed from interface; use getTime() instead

	getTime()

	New method; returns Type\Time

Provider\NodeProviderInterface

	Method

	Description

	getNode()

	Used to return string|false|null; now returns Type\Hexadecimal

Constructor Changes

There are a handful of constructor changes that might affect your use of
ramsey/uuid, especially if you customize the library.

Uuid

The constructor for Ramsey\Uuid\Uuid is deprecated. However,
there are a few changes to it that might affect your use of this class.

The first constructor parameter used to be array $fields and is now
Rfc4122\FieldsInterface $fields.

Converter\TimeConverterInterface $timeConverter is required as a new fourth
parameter.

Builder\DefaultUuidBuilder

While Builder\DefaultUuidBuilder is deprecated, it now inherits from
Rfc4122\UuidBuilder, which requires Converter\TimeConverterInterface
$timeConverter as its second constructor argument.

Provider\Node\FallbackNodeProvider

Provider\Node\FallbackNodeProvider now requires
iterable<Ramsey\Uuid\Provider\NodeProviderInterface> as its constructor
parameter.

use MyPackage\MyCustomNodeProvider;
use Ramsey\Uuid\Provider\Node\FallbackNodeProvider;
use Ramsey\Uuid\Provider\Node\RandomNodeProvider;
use Ramsey\Uuid\Provider\Node\SystemNodeProvider;

$nodeProviders = [];
$nodeProviders[] = new MyCustomNodeProvider();
$nodeProviders[] = new SystemNodeProvider();
$nodeProviders[] = new RandomNodeProvider();

$provider = new FallbackNodeProvider($nodeProviders);

Provider\Time\FixedTimeProvider

The constructor for Provider\Time\FixedTimeProvider no longer accepts an
array. It accepts Type\Time instances.

Footnotes

	1

	This mixed return type could have been an int, string, or
Moontoast\Math\BigNumber. In version 4, ramsey/uuid cleans this up for
the sake of consistency.

	2

	The getFields()
method returns a Type\Hexadecimal
instance; you will need to construct an array if you wish to match the
return value of the deprecated getFieldsHex() method.

Version 2 to 3

While we have made significant internal changes to the library, we have made
every effort to ensure a seamless upgrade path from the 2.x series of this
library to 3.x.

One major breaking change is the transition from the Rhumsaa root namespace
to Ramsey. In most cases, all you will need is to change the namespace to
Ramsey in your code, and everything will “just work.”

Note

For more details on the namespace change, including reasons for the change,
read the blog post “Introducing ramsey/uuid [https://benramsey.com/blog/2016/04/ramsey-uuid/]”.

Here are full details on the breaking changes to the public API of this library:

	All namespace references of Rhumsaa have changed to Ramsey. Simply
change the namespace to Ramsey in your code and everything should work.

	The console application has moved to
ramsey/uuid-console [https://packagist.org/packages/ramsey/uuid-console].
If using the console functionality, use Composer to require
ramsey/uuid-console.

	The Doctrine field type mapping has moved to
ramsey/uuid-doctrine [https://packagist.org/packages/ramsey/uuid-doctrine].
If using the Doctrine functionality, use Composer to require
ramsey/uuid-doctrine.

Frequently Asked Questions (FAQs)

	How do I fix “rhumsaa/uuid is abandoned” messages?

	Why does ramsey/uuid use final?

How do I fix “rhumsaa/uuid is abandoned” messages?

When installing your project’s dependencies using Composer, you might see the
following message:

Package rhumsaa/uuid is abandoned; you should avoid using it. Use
ramsey/uuid instead.

Don’t panic. Simply execute the following commands with Composer:

composer remove rhumsaa/uuid
composer require ramsey/uuid=^2.9

After doing so, you will have the latest ramsey/uuid package in the 2.x series,
and there will be no need to modify any code; the namespace in the 2.x series is
still Rhumsaa.

Why does ramsey/uuid use final?

You might notice that many of the concrete classes returned in ramsey/uuid are
marked as final. There are specific reasons for this choice, and I will
offer a few solutions for those looking to extend or mock the classes for
testing purposes.

But Why?

 Reference

Reference

	Uuid

	UuidInterface

	Fields\FieldsInterface

	Rfc4122\UuidInterface

	Rfc4122\FieldsInterface

	Rfc4122\UuidV1

	Rfc4122\UuidV2

	Rfc4122\UuidV3

	Rfc4122\UuidV4

	Rfc4122\UuidV5

	Rfc4122\UuidV6

	Rfc4122\UuidV7

	Rfc4122\UuidV8

	Guid\Fields

	Guid\Guid

	Nonstandard\Fields

	Nonstandard\Uuid

	Nonstandard\UuidV6

	UuidFactoryInterface

	Types

	Exceptions

	Helper Functions

	Predefined Namespaces

	Calculators

	Validators

 Uuid

Uuid

RamseyUuidUuid provides static methods for the most common functionality for
generating and working with UUIDs. It also provides constants used throughout
the ramsey/uuid library.

	
class Ramsey\Uuid\Uuid

	
	
constant UUID_TYPE_TIME

	Version 1: Gregorian Time UUID.

	
constant UUID_TYPE_DCE_SECURITY

	Version 2: DCE Security UUID.

	
constant UUID_TYPE_HASH_MD5

	Version 3: Name-based (MD5) UUID.

	
constant UUID_TYPE_RANDOM

	Version 4: Random UUID.

	
constant UUID_TYPE_HASH_SHA1

	Version 5: Name-based (SHA-1) UUID.

	
constant UUID_TYPE_REORDERED_TIME

	Version 6: Reordered Time UUID.

	
constant UUID_TYPE_PEABODY

	Deprecated. Use Uuid::UUID_TYPE_REORDERED_TIME instead.

	
constant UUID_TYPE_UNIX_TIME

	Version 7: Unix Epoch Time UUID.

	
constant NAMESPACE_DNS

	The name string is a fully-qualified domain name.

	
constant NAMESPACE_URL

	The name string is a URL.

	
constant NAMESPACE_OID

	The name string is an ISO object identifier (OID) [http://www.oid-info.com].

	
constant NAMESPACE_X500

	The name string is an X.500 [https://en.wikipedia.org/wiki/X.500] DN [https://en.wikipedia.org/wiki/Distinguished_Name] in DER [https://www.itu.int/rec/T-REC-X.690/] or a text output format.

	
constant NIL

	The nil UUID is a special form of UUID that is specified to have all 128
bits set to zero.

	
constant DCE_DOMAIN_PERSON

	DCE Security principal (person) domain.

	
constant DCE_DOMAIN_GROUP

	DCE Security group domain.

	
constant DCE_DOMAIN_ORG

	DCE Security organization domain.

	
constant RESERVED_NCS

	Variant identifier: reserved, NCS backward compatibility.

	
constant RFC_4122

	Variant identifier: the UUID layout specified in RFC 4122.

	
constant RESERVED_MICROSOFT

	Variant identifier: reserved, Microsoft Corporation backward compatibility.

	
constant RESERVED_FUTURE

	Variant identifier: reserved for future definition.

	
static uuid1([$node[, $clockSeq]])

	Generates a version 1, Gregorian time UUID. See Version 1: Gregorian Time.

	Parameters

	
	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 1 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV1

	
static uuid2($localDomain[, $localIdentifier[, $node[, $clockSeq]]])

	Generates a version 2, DCE Security UUID. See Version 2: DCE Security.

	Parameters

	
	$localDomain (int) – The local domain to use (one of Uuid::DCE_DOMAIN_PERSON, Uuid::DCE_DOMAIN_GROUP, or Uuid::DCE_DOMAIN_ORG)

	$localIdentifier (Ramsey\Uuid\Type\Integer|null) – A local identifier for the domain (defaults to system UID or GID for person or group)

	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 2 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV2

	
static uuid3($ns, $name)

	Generates a version 3, name-based (MD5) UUID. See Version 3: Name-based (MD5).

	Parameters

	
	$ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

	$name (string) – The name from which to generate an identifier

	Returns

	A version 3 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV3

	
static uuid4

	Generates a version 4, random UUID. See Version 4: Random.

	Returns

	A version 4 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV4

	
static uuid5($ns, $name)

	Generates a version 5, name-based (SHA-1) UUID. See Version 5: Name-based (SHA-1).

	Parameters

	
	$ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

	$name (string) – The name from which to generate an identifier

	Returns

	A version 5 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV5

	
static uuid6([$node[, $clockSeq]])

	Generates a version 6, reordered time UUID. See Version 6: Reordered Time.

	Parameters

	
	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 6 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV6

	
static uuid7([$dateTime])

	Generates a version 7, Unix Epoch time UUID. See Version 7: Unix Epoch Time.

	Parameters

	
	$dateTime (DateTimeInterface|null) – The date from which to create the UUID instance

	Returns

	A version 7 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV7

	
static fromString($uuid)

	Creates an instance of UuidInterface from the string standard
representation.

	Parameters

	
	$uuid (string) – The string standard representation of a UUID

	Return type

	Ramsey\Uuid\UuidInterface

	
static fromBytes($bytes)

	Creates an instance of UuidInterface from a 16-byte string.

	Parameters

	
	$bytes (string) – A 16-byte binary string representation of a UUID

	Return type

	Ramsey\Uuid\UuidInterface

	
static fromInteger($integer)

	Creates an instance of UuidInterface from a 128-bit string integer.

	Parameters

	
	$integer (string) – A 128-bit string integer representation of a UUID

	Return type

	Ramsey\Uuid\UuidInterface

	
static fromDateTime($dateTime[, $node[, $clockSeq]])

	Creates a version 1 UUID instance from a DateTimeInterface [https://www.php.net/datetimeinterface] instance.

	Parameters

	
	$dateTime (DateTimeInterface) – The date from which to create the UUID instance

	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 1 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV1

	
static isValid($uuid)

	Validates the string standard representation of a UUID.

	Parameters

	
	$uuid (string) – The string standard representation of a UUID

	Return type

	bool

	
static setFactory($factory)

	Sets the factory used to create UUIDs.

	Parameters

	
	$factory (Ramsey\Uuid\UuidFactoryInterface) – A UUID factory to use for all UUID generation

	Return type

	void

 UuidInterface

UuidInterface

	
interface Ramsey\Uuid\UuidInterface

	Represents a UUID.

	
compareTo($other)

	
	Parameters

	
	$other (Ramsey\Uuid\UuidInterface) – The UUID to compare

	Returns

	Returns -1, 0, or 1 if the UUID is less than, equal to, or greater than the other UUID.

	Return type

	int

	
equals($other)

	
	Parameters

	
	$other (object|null) – An object to test for equality with this UUID.

	Returns

	Returns true if the UUID is equal to the provided object.

	Return type

	bool

	
getBytes()

	
	Returns

	A binary string representation of the UUID.

	Return type

	string

	
getFields()

	
	Returns

	The fields that comprise this UUID.

	Return type

	Ramsey\Uuid\Fields\FieldsInterface

	
getHex()

	
	Returns

	The hexadecimal representation of the UUID.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getInteger()

	
	Returns

	The integer representation of the UUID.

	Return type

	Ramsey\Uuid\Type\Integer

	
getUrn()

	
	Returns

	The string standard representation of the UUID as a URN [https://tools.ietf.org/html/rfc8141].

	Return type

	string

	
toString()

	
	Returns

	The string standard representation of the UUID.

	Return type

	string

	
__toString()

	
	Returns

	The string standard representation of the UUID.

	Return type

	string

 Fields\FieldsInterface

Fields\FieldsInterface

	
interface Ramsey\Uuid\Fields\FieldsInterface

	Represents the fields of a UUID.

	
getBytes()

	
	Returns

	The bytes that comprise these fields.

	Return type

	string

 Rfc4122\UuidInterface

Rfc4122\UuidInterface

	
interface Ramsey\Uuid\Rfc4122\UuidInterface

	Implements Ramsey\Uuid\UuidInterface.

Rfc4122UuidInterface represents an RFC 4122 UUID. In addition to the
methods defined on the interface, this interface additionally defines the
following methods.

	
getFields()

	
	Returns

	The fields that comprise this UUID.

	Return type

	Ramsey\Uuid\Rfc4122\FieldsInterface

 Rfc4122\FieldsInterface

Rfc4122\FieldsInterface

	
interface Ramsey\Uuid\Rfc4122\FieldsInterface

	Implements Ramsey\Uuid\Fields\FieldsInterface.

Rfc4122FieldsInterface represents the fields of an RFC 4122 UUID.
In addition to the methods defined on the interface, this class additionally
defines the following methods.

	
getClockSeq()

	
	Returns

	The full 16-bit clock sequence, with the variant bits (two most significant bits) masked out.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getClockSeqHiAndReserved()

	
	Returns

	The high field of the clock sequence multiplexed with the variant.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getClockSeqLow()

	
	Returns

	The low field of the clock sequence.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getNode()

	
	Returns

	The node field.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getTimeHiAndVersion()

	
	Returns

	The high field of the timestamp multiplexed with the version.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getTimeLow()

	
	Returns

	The low field of the timestamp.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getTimeMid()

	
	Returns

	The middle field of the timestamp.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getTimestamp()

	
	Returns

	The full 60-bit timestamp, without the version.

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
getVariant()

	Returns the variant, which, for RFC 4122 variant UUIDs, should always be
the value 2.

	Returns

	The UUID variant.

	Return type

	int

	
getVersion()

	
	Returns

	The UUID version.

	Return type

	int

	
isNil()

	A nil UUID is a special type of UUID with all 128 bits set to zero.
Its string standard representation is always
00000000-0000-0000-0000-000000000000.

	Returns

	True if this UUID represents a nil UUID.

	Return type

	bool

 Rfc4122\UuidV1

Rfc4122\UuidV1

	
class Ramsey\Uuid\Rfc4122\UuidV1

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV1 represents a version 1, Gregorian time UUID.
In addition to providing the methods defined on the interface, this class
additionally provides the following methods.

	
getDateTime()

	
	Returns

	A date object representing the timestamp associated with the UUID.

	Return type

	\DateTimeInterface

 Rfc4122\UuidV2

Rfc4122\UuidV2

	
class Ramsey\Uuid\Rfc4122\UuidV2

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV2 represents a version 2, DCE Security UUID.
In addition to providing the methods defined on the interface, this class
additionally provides the following methods.

	
getDateTime()

	Returns a DateTimeInterface [https://www.php.net/datetimeinterface]
instance representing the timestamp associated with the UUID

Caution

It is important to note that version 2 UUIDs suffer from some loss
of timestamp precision. See Lossy Timestamps
to learn more.

	Returns

	A date object representing the timestamp associated with the UUID

	Return type

	\DateTimeInterface

	
getLocalDomain()

	
	Returns

	The local domain identifier for this UUID, which is one of
Ramsey\Uuid\Uuid::DCE_DOMAIN_PERSON,
Ramsey\Uuid\Uuid::DCE_DOMAIN_GROUP, or
Ramsey\Uuid\Uuid::DCE_DOMAIN_ORG

	Return type

	int

	
getLocalDomainName()

	
	Returns

	A string name associated with the local domain identifier (one of “person,” “group,” or “org”)

	Return type

	string

	
getLocalIdentifier()

	
	Returns

	The local identifier used when creating this UUID

	Return type

	Ramsey\Uuid\Type\Integer

 Rfc4122\UuidV3

Rfc4122\UuidV3

	
class Ramsey\Uuid\Rfc4122\UuidV3

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV3 represents a version 3, name-based (MD5) UUID.

 Rfc4122\UuidV4

Rfc4122\UuidV4

	
class Ramsey\Uuid\Rfc4122\UuidV4

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV4 represents a version 4, random UUID.

 Rfc4122\UuidV5

Rfc4122\UuidV5

	
class Ramsey\Uuid\Rfc4122\UuidV5

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV5 represents a version 5, name-based (SHA-1) UUID.

 Rfc4122\UuidV6

Rfc4122\UuidV6

	
class Ramsey\Uuid\Rfc4122\UuidV6

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV6 represents a version 6, reordered time UUID. In addition to providing the methods defined on the
interface, this class additionally provides the following methods.

	
getDateTime()

	
	Returns

	A date object representing the timestamp associated with the UUID

	Return type

	\DateTimeInterface

	
toUuidV1()

	
	Returns

	A version 1 UUID, converted from this version 6 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV1

	
static fromUuidV1

	
	Parameters

	
	$uuidV1 (Ramsey\Uuid\Rfc4122\UuidV1) – A version 1 UUID

	Returns

	A version 6 UUID, converted from the given version 1 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV6

 Rfc4122\UuidV7

Rfc4122\UuidV7

	
class Ramsey\Uuid\Rfc4122\UuidV7

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV7 represents a version 7, Unix Epoch time UUID.
In addition to providing the methods defined on the interface, this class
additionally provides the following methods.

	
getDateTime()

	
	Returns

	A date object representing the timestamp associated with the UUID.

	Return type

	\DateTimeInterface

 Rfc4122\UuidV8

Rfc4122\UuidV8

	
class Ramsey\Uuid\Rfc4122\UuidV8

	Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV8 represents a version 8, custom UUID.

 Guid\Fields

Guid\Fields

	
class Ramsey\Uuid\Guid\Fields

	Implements Ramsey\Uuid\Rfc4122\FieldsInterface.

GuidFields represents the fields of a GUID.

 Guid\Guid

Guid\Guid

	
class Ramsey\Uuid\Guid\Guid

	Implements Ramsey\Uuid\UuidInterface.

Guid represents a Globally Unique Identifiers (GUIDs). In addition to providing the
methods defined on the interface, this class additionally provides the
following methods.

	
getFields()

	
	Returns

	The fields that comprise this GUID.

	Return type

	Ramsey\Uuid\Guid\Fields

 Nonstandard\Fields

Nonstandard\Fields

	
class Ramsey\Uuid\Nonstandard\Fields

	Implements Ramsey\Uuid\Rfc4122\FieldsInterface.

NonstandardFields represents the fields of a nonstandard UUID.

 Nonstandard\Uuid

Nonstandard\Uuid

	
class Ramsey\Uuid\Nonstandard\Uuid

	Implements Ramsey\Uuid\UuidInterface.

NonstandardUuid represents Other Nonstandard UUIDs. In addition to
providing the methods defined on the interface, this class additionally
provides the following methods.

	
getFields()

	
	Returns

	The fields that comprise this UUID

	Return type

	Ramsey\Uuid\Nonstandard\Fields

 Nonstandard\UuidV6

Nonstandard\UuidV6

	
class Ramsey\Uuid\Nonstandard\UuidV6

	
Attention

Ramsey\Uuid\Nonstandard\UuidV6 is deprecated in favor of
Ramsey\Uuid\Rfc4122\UuidV6. Please migrate any code
using Nonstandard\UuidV6 to Rfc4122\UuidV6. The interface is
otherwise identical.

Implements Ramsey\Uuid\Rfc4122\UuidInterface.

UuidV6 represents a version 6, reordered time UUID. In addition to providing the methods defined on the
interface, this class additionally provides the following methods.

	
getDateTime()

	
	Returns

	A date object representing the timestamp associated with the UUID

	Return type

	\DateTimeInterface

	
toUuidV1()

	
	Returns

	A version 1 UUID, converted from this version 6 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV1

	
static fromUuidV1

	
	Parameters

	
	$uuidV1 (Ramsey\Uuid\Rfc4122\UuidV1) – A version 1 UUID

	Returns

	A version 6 UUID, converted from the given version 1 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV6

 UuidFactoryInterface

UuidFactoryInterface

	
interface Ramsey\Uuid\UuidFactoryInterface

	Represents a UUID factory.

	
getValidator()

	
	Return type

	Ramsey\Uuid\Validator\ValidatorInterface

	
uuid1([$node[, $clockSeq]])

	Generates a version 1, Gregorian time UUID. See Version 1: Gregorian Time.

	Parameters

	
	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 1 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV1

	
uuid2($localDomain[, $localIdentifier[, $node[, $clockSeq]]])

	Generates a version 2, DCE Security UUID. See Version 2: DCE Security.

	Parameters

	
	$localDomain (int) – The local domain to use (one of Uuid::DCE_DOMAIN_PERSON, Uuid::DCE_DOMAIN_GROUP, or Uuid::DCE_DOMAIN_ORG)

	$localIdentifier (Ramsey\Uuid\Type\Integer|null) – A local identifier for the domain (defaults to system UID or GID for person or group)

	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 2 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV2

	
uuid3($ns, $name)

	Generates a version 3, name-based (MD5) UUID. See Version 3: Name-based (MD5).

	Parameters

	
	$ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

	$name (string) – The name from which to generate an identifier

	Returns

	A version 3 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV3

	
uuid4()

	Generates a version 4, random UUID. See Version 4: Random.

	Returns

	A version 4 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV4

	
uuid5($ns, $name)

	Generates a version 5, name-based (SHA-1) UUID. See Version 5: Name-based (SHA-1).

	Parameters

	
	$ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

	$name (string) – The name from which to generate an identifier

	Returns

	A version 5 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV5

	
uuid6([$node[, $clockSeq]])

	Generates a version 6, reordered time UUID. See Version 6: Reordered Time.

	Parameters

	
	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 6 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV6

	
fromString($uuid)

	Creates an instance of UuidInterface from the string standard
representation.

	Parameters

	
	$uuid (string) – The string standard representation of a UUID

	Return type

	Ramsey\Uuid\UuidInterface

	
fromBytes($bytes)

	Creates an instance of UuidInterface from a 16-byte string.

	Parameters

	
	$bytes (string) – A 16-byte binary string representation of a UUID

	Return type

	Ramsey\Uuid\UuidInterface

	
fromInteger($integer)

	Creates an instance of UuidInterface from a 128-bit string integer.

	Parameters

	
	$integer (string) – A 128-bit string integer representation of a UUID

	Return type

	Ramsey\Uuid\UuidInterface

	
fromDateTime($dateTime[, $node[, $clockSeq]])

	Creates a version 1 UUID instance from a DateTimeInterface [https://www.php.net/datetimeinterface] instance.

	Parameters

	
	$dateTime (DateTimeInterface) – The date from which to create the UUID instance

	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A version 1 UUID

	Return type

	Ramsey\Uuid\Rfc4122\UuidV1

 Types

Types

	
class Ramsey\Uuid\Type\TypeInterface

	Implements JsonSerializable [https://www.php.net/jsonserializable] and
Serializable [https://www.php.net/serializable].

TypeInterface ensures consistency in typed values returned by ramsey/uuid.

	
toString()

	
	Return type

	string

	
__toString()

	
	Return type

	string

	
class Ramsey\Uuid\Type\NumberInterface

	Implements Ramsey\Uuid\Type\TypeInterface.

NumberInterface ensures consistency in numeric values returned by ramsey/uuid.

	
isNegative()

	
	Returns

	True if this number is less than zero, false otherwise.

	Return type

	bool

	
class Ramsey\Uuid\Type\Decimal

	Implements Ramsey\Uuid\Type\NumberInterface.

A value object representing a decimal, for type-safety purposes, to ensure
that decimals returned from ramsey/uuid methods as strings are truly
decimals and not some other kind of string.

To support values as true decimals and not as floats or doubles, we store
the decimals as strings.

	
class Ramsey\Uuid\Type\Hexadecimal

	Implements Ramsey\Uuid\Type\TypeInterface.

A value object representing a hexadecimal number, for type-safety purposes,
to ensure that hexadecimal numbers returned from ramsey/uuid methods as
strings are truly hexadecimal and not some other kind of string.

	
class Ramsey\Uuid\Type\Integer

	Implements Ramsey\Uuid\Type\NumberInterface.

A value object representing an integer, for type-safety purposes, to ensure
that integers returned from ramsey/uuid methods as strings are truly
integers and not some other kind of string.

To support large integers beyond PHP_INT_MAX and PHP_INT_MIN on both
64-bit and 32-bit systems, we store the integers as strings.

	
class Ramsey\Uuid\Type\Time

	Implements Ramsey\Uuid\Type\TypeInterface.

A value object representing a timestamp, for type-safety purposes, to ensure
that timestamps used by ramsey/uuid are truly timestamp integers and not
some other kind of string or integer.

	
getSeconds()

	
	Return type

	Ramsey\Uuid\Type\Integer

	
getMicroseconds()

	
	Return type

	Ramsey\Uuid\Type\Integer

 Exceptions

Exceptions

All exceptions in the Ramsey\Uuid namespace implement
Ramsey\Uuid\Exception\UuidExceptionInterface. This provides
a base type you may use to catch any and all exceptions that originate from this
library.

	
interface Ramsey\Uuid\Exception\UuidExceptionInterface

	This is the interface all exceptions in ramsey/uuid must implement.

	
exception Ramsey\Uuid\Exception\BuilderNotFoundException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate that no suitable UUID builder could be found.

	
exception Ramsey\Uuid\Exception\DateTimeException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate that the PHP DateTime extension encountered an
exception or error.

	
exception Ramsey\Uuid\Exception\DceSecurityException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate an exception occurred while dealing with DCE Security
(version 2) UUIDs

	
exception Ramsey\Uuid\Exception\InvalidArgumentException

	Extends InvalidArgumentException [https://www.php.net/invalidargumentexception].

Thrown to indicate that the argument received is not valid.

	
exception Ramsey\Uuid\Exception\InvalidBytesException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate that the bytes being operated on are invalid in some way.

	
exception Ramsey\Uuid\Exception\InvalidUuidStringException

	Extends Ramsey\Uuid\Exception\InvalidArgumentException.

Thrown to indicate that the string received is not a valid UUID.

	
exception Ramsey\Uuid\Exception\NameException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate that an error occurred while attempting to hash a
namespace and name

	
exception Ramsey\Uuid\Exception\NodeException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate that attempting to fetch or create a node ID encountered
an error.

	
exception Ramsey\Uuid\Exception\RandomSourceException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate that the source of random data encountered an error.

	
exception Ramsey\Uuid\Exception\TimeSourceException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate that the source of time encountered an error.

	
exception Ramsey\Uuid\Exception\UnableToBuildUuidException

	Extends RuntimeException [https://www.php.net/runtimeexception].

Thrown to indicate a builder is unable to build a UUID.

	
exception Ramsey\Uuid\Exception\UnsupportedOperationException

	Extends LogicException [https://www.php.net/logicexception].

Thrown to indicate that the requested operation is not supported.

 Helper Functions

Helper Functions

ramsey/uuid additionally provides the following helper functions, which return
only the string standard representation of a UUID.

	
Ramsey\Uuid\v1([$node[, $clockSeq]])

	Generates a string standard representation of a version 1, Gregorian time UUID.

	Parameters

	
	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A string standard representation of a version 1 UUID

	Return type

	string

	
Ramsey\Uuid\v2($localDomain[, $localIdentifier[, $node[, $clockSeq]]])

	Generates a string standard representation of a version 2, DCE Security UUID.

	Parameters

	
	$localDomain (int) – The local domain to use (one of Uuid::DCE_DOMAIN_PERSON, Uuid::DCE_DOMAIN_GROUP, or Uuid::DCE_DOMAIN_ORG)

	$localIdentifier (Ramsey\Uuid\Type\Integer|null) – A local identifier for the domain (defaults to system UID or GID for person or group)

	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A string standard representation of a version 2 UUID

	Return type

	string

	
Ramsey\Uuid\v3($ns, $name)

	Generates a string standard representation of a version 3, name-based (MD5) UUID.

	Parameters

	
	$ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

	$name (string) – The name from which to generate an identifier

	Returns

	A string standard representation of a version 3 UUID

	Return type

	string

	
Ramsey\Uuid\v4()

	Generates a string standard representation of a version 4, random UUID.

	Returns

	A string standard representation of a version 4 UUID

	Return type

	string

	
Ramsey\Uuid\v5($ns, $name)

	Generates a string standard representation of a version 5, name-based (SHA-1) UUID.

	Parameters

	
	$ns (Ramsey\Uuid\UuidInterface|string) – The namespace for this identifier

	$name (string) – The name from which to generate an identifier

	Returns

	A string standard representation of a version 5 UUID

	Return type

	string

	
Ramsey\Uuid\v6([$node[, $clockSeq]])

	Generates a string standard representation of a version 6, reordered time UUID.

	Parameters

	
	$node (Ramsey\Uuid\Type\Hexadecimal|null) – An optional hexadecimal node to use

	$clockSeq (int|null) – An optional clock sequence to use

	Returns

	A string standard representation of a version 6 UUID

	Return type

	string

 Predefined Namespaces

Predefined Namespaces

RFC 4122 [https://tools.ietf.org/html/rfc4122] defines a handful of UUIDs to use with “for some potentially
interesting name spaces.”

	Constant

	Description

	Uuid::NAMESPACE_DNS

	The name string is a fully-qualified domain name.

	Uuid::NAMESPACE_URL

	The name string is a URL.

	Uuid::NAMESPACE_OID

	The name string is an ISO object identifier (OID) [http://www.oid-info.com].

	Uuid::NAMESPACE_X500

	The name string is an X.500 [https://en.wikipedia.org/wiki/X.500] DN [https://en.wikipedia.org/wiki/Distinguished_Name] in DER [https://www.itu.int/rec/T-REC-X.690/] or a text output format.

 Calculators

Calculators

	
interface Ramsey\Uuid\Math\CalculatorInterface

	Provides functionality for performing mathematical calculations.

	
add($augend, ...$addends)

	
	Parameters

	
	$augend (Ramsey\Uuid\Type\NumberInterface) – The first addend (the integer being added to)

	...$addends (Ramsey\Uuid\Type\NumberInterface) – The additional integers to a add to the augend

	Returns

	The sum of all the parameters

	Return type

	Ramsey\Uuid\Type\NumberInterface

	
subtract($minuend, ...$subtrahends)

	
	Parameters

	
	$minuend (Ramsey\Uuid\Type\NumberInterface) – The integer being subtracted from

	...$subtrahends (Ramsey\Uuid\Type\NumberInterface) – The integers to subtract from the minuend

	Returns

	The difference after subtracting all parameters

	Return type

	Ramsey\Uuid\Type\NumberInterface

	
multiply($multiplicand, ...$multipliers)

	
	Parameters

	
	$multiplicand (Ramsey\Uuid\Type\NumberInterface) – The integer to be multiplied

	...$multipliers (Ramsey\Uuid\Type\NumberInterface) – The factors by which to multiply the multiplicand

	Returns

	The product of multiplying all the provided parameters

	Return type

	Ramsey\Uuid\Type\NumberInterface

	
divide($roundingMode, $scale, $dividend, ...$divisors)

	
	Parameters

	
	$roundingMode (int) – The strategy for rounding the quotient; one of the Ramsey\Uuid\Math\RoundingMode constants

	$scale (int) – The scale to use for the operation

	$dividend (Ramsey\Uuid\Type\NumberInterface) – The integer to be divided

	...$divisors (Ramsey\Uuid\Type\NumberInterface) – The integers to divide $dividend by, in the order in which the division operations should take place (left-to-right)

	Returns

	The quotient of dividing the provided parameters left-to-right

	Return type

	Ramsey\Uuid\Type\NumberInterface

	
fromBase($value, $base)

	Converts a value from an arbitrary base to a base-10 integer value.

	Parameters

	
	$value (string) – The value to convert

	$base (int) – The base to convert from (i.e., 2, 16, 32, etc.)

	Returns

	The base-10 integer value of the converted value

	Return type

	Ramsey\Uuid\Type\Integer

	
toBase($value, $base)

	Converts a base-10 integer value to an arbitrary base.

	Parameters

	
	$value (Ramsey\Uuid\Type\Integer) – The integer value to convert

	$base (int) – The base to convert to (i.e., 2, 16, 32, etc.)

	Returns

	The value represented in the specified base

	Return type

	string

	
toHexadecimal($value)

	Converts an Integer instance to a Hexadecimal instance.

	Parameters

	
	$value (Ramsey\Uuid\Type\Integer) – The Integer to convert to Hexadecimal

	Return type

	Ramsey\Uuid\Type\Hexadecimal

	
toInteger($value)

	Converts a Hexadecimal instance to an Integer instance.

	Parameters

	
	$value (Ramsey\Uuid\Type\Hexadecimal) – The Hexadecimal to convert to Integer

	Return type

	Ramsey\Uuid\Type\Integer

	
class Ramsey\Uuid\Math\RoundingMode

	
	
constant UNNECESSARY

	Asserts that the requested operation has an exact result, hence no
rounding is necessary.

	
constant UP

	Rounds away from zero.

Always increments the digit prior to a nonzero discarded fraction.
Note that this rounding mode never decreases the magnitude of the
calculated value.

	
constant DOWN

	Rounds towards zero.

Never increments the digit prior to a discarded fraction (i.e.,
truncates). Note that this rounding mode never increases the magnitude of
the calculated value.

	
constant CEILING

	Rounds towards positive infinity.

If the result is positive, behaves as for UP; if negative, behaves as for
DOWN. Note that
this rounding mode never decreases the calculated value.

	
constant FLOOR

	Rounds towards negative infinity.

If the result is positive, behave as for DOWN; if negative, behave as for
UP. Note that this
rounding mode never increases the calculated value.

	
constant HALF_UP

	Rounds towards “nearest neighbor” unless both neighbors are equidistant,
in which case round up.

Behaves as for UP if
the discarded fraction is >= 0.5; otherwise, behaves as for
DOWN. Note that
this is the rounding mode commonly taught at school.

	
constant HALF_DOWN

	Rounds towards “nearest neighbor” unless both neighbors are equidistant,
in which case round down.

Behaves as for UP if
the discarded fraction is > 0.5; otherwise, behaves as for
DOWN.

	
constant HALF_CEILING

	Rounds towards “nearest neighbor” unless both neighbors are equidistant,
in which case round towards positive infinity.

If the result is positive, behaves as for HALF_UP; if negative, behaves as
for HALF_DOWN.

	
constant HALF_FLOOR

	Rounds towards “nearest neighbor” unless both neighbors are equidistant,
in which case round towards negative infinity.

If the result is positive, behaves as for HALF_DOWN; if negative, behaves as
for HALF_UP.

	
constant HALF_EVEN

	Rounds towards the “nearest neighbor” unless both neighbors are
equidistant, in which case rounds towards the even neighbor.

Behaves as for HALF_UP
if the digit to the left of the discarded fraction is odd; behaves as
for HALF_DOWN
if it’s even.

Note that this is the rounding mode that statistically minimizes
cumulative error when applied repeatedly over a sequence of calculations.
It is sometimes known as “Banker’s rounding”, and is chiefly used in the
USA.

 Validators

Validators

	
interface Ramsey\Uuid\Validator\ValidatorInterface

	
	
getPattern()

	
	Returns

	The regular expression pattern used by this validator

	Return type

	string

	
validate($uuid)

	
	Parameters

	
	$uuid (string) – The string to validate as a UUID

	Returns

	True if the provided string represents a UUID, false otherwise

	Return type

	bool

	
class Ramsey\Uuid\Validator\GenericValidator

	Implements Ramsey\Uuid\Validator\ValidatorInterface.

GenericValidator validates strings as UUIDs of any variant.

	
class Ramsey\Uuid\Rfc4122\Validator

	Implements Ramsey\Uuid\Validator\ValidatorInterface.

Rfc4122Validator validates strings as UUIDs of the RFC 4122 variant.

 Copyright

Copyright

Copyright © 2012-2023 Ben Ramsey <ben@benramsey.com>

This work is licensed under the Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

 ramsey/uuid for Enterprise

ramsey/uuid for Enterprise

Available as part of the Tidelift Subscription

Tidelift is working with the maintainers of ramsey/uuid and thousands of other
open source projects to deliver commercial support and maintenance for the open
source dependencies you use to build your applications. Save time, reduce risk,
and improve code health, while paying the maintainers of the exact dependencies
you use.

Learn More [https://tidelift.com/subscription/pkg/packagist-ramsey-uuid?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise] Request a Demo [https://tidelift.com/subscription/request-a-demo?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise]
Enterprise-ready open source software — managed for you

The Tidelift Subscription is a managed open source subscription for application
dependencies covering millions of open source projects across JavaScript,
Python, Java, PHP, Ruby, .NET, and more.

Your subscription includes:

	Security updates
	Tidelift’s security response team coordinates patches for new breaking
security vulnerabilities and alerts immediately through a private channel,
so your software supply chain is always secure.

	Licensing verification and indemnification
	Tidelift verifies license information to enable easy policy enforcement and
adds intellectual property indemnification to cover creators and users in
case something goes wrong. You always have a 100% up-to-date bill of
materials for your dependencies to share with your legal team, customers,
or partners.

	Maintenance and code improvement
	Tidelift ensures the software you rely on keeps working as long as you need
it to work. Your managed dependencies are actively maintained and we recruit
additional maintainers where required.

	Package selection and version guidance
	We help you choose the best open source packages from the start—and then
guide you through updates to stay on the best releases as new issues arise.

	Roadmap input
	Take a seat at the table with the creators behind the software you use.
Tidelift’s participating maintainers earn more income as their software is
used by more subscribers, so they’re interested in knowing what you need.

	Tooling and cloud integration
	Tidelift works with GitHub, GitLab, BitBucket, and more. We support every
cloud platform (and other deployment targets, too).

The end result? All of the capabilities you expect from commercial-grade
software, for the full breadth of open source you use. That means less time
grappling with esoteric open source trivia, and more time building your own
applications—and your business.

Learn More [https://tidelift.com/subscription/pkg/packagist-ramsey-uuid?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise] Request a Demo [https://tidelift.com/subscription/request-a-demo?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise]

 PHP Namespace Index

 PHP Namespace Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 Ramsey	

 	
 	
 Ramsey\Uuid	

 	
 	
 Ramsey\Uuid\Exception	

 	
 	
 Ramsey\Uuid\Fields	

 	
 	
 Ramsey\Uuid\Guid	

 	
 	
 Ramsey\Uuid\Math	

 	
 	
 Ramsey\Uuid\Nonstandard	

 	
 	
 Ramsey\Uuid\Rfc4122	

 	
 	
 Ramsey\Uuid\Type	

 	
 	
 Ramsey\Uuid\Validator	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | R
 | S
 | T
 | U
 | V

_

 	
 	__toString() (Ramsey\Uuid\Type\TypeInterface method)

 	(Ramsey\Uuid\UuidInterface method)

A

 	
 	add() (Ramsey\Uuid\Math\CalculatorInterface method)

B

 	
 	BuilderNotFoundException

C

 	
 	CalculatorInterface (interface in Ramsey\Uuid\Math)

 	
 	compareTo() (Ramsey\Uuid\UuidInterface method)

D

 	
 	DateTimeException

 	DceSecurityException

 	
 	Decimal (class in Ramsey\Uuid\Type)

 	divide() (Ramsey\Uuid\Math\CalculatorInterface method)

E

 	
 	equals() (Ramsey\Uuid\UuidInterface method)

F

 	
 	Fields (class in Ramsey\Uuid\Guid)

 	(class in Ramsey\Uuid\Nonstandard)

 	FieldsInterface (interface in Ramsey\Uuid\Fields)

 	(interface in Ramsey\Uuid\Rfc4122)

 	fromBase() (Ramsey\Uuid\Math\CalculatorInterface method)

 	fromBytes() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	
 	fromDateTime() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	fromInteger() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	fromString() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	fromUuidV1() (Ramsey\Uuid\Nonstandard\UuidV6 method)

 	(Ramsey\Uuid\Rfc4122\UuidV6 method)

G

 	
 	GenericValidator (class in Ramsey\Uuid\Validator)

 	getBytes() (Ramsey\Uuid\Fields\FieldsInterface method)

 	(Ramsey\Uuid\UuidInterface method)

 	getClockSeq() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getClockSeqHiAndReserved() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getClockSeqLow() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getDateTime() (Ramsey\Uuid\Nonstandard\UuidV6 method)

 	(Ramsey\Uuid\Rfc4122\UuidV1 method)

 	(Ramsey\Uuid\Rfc4122\UuidV2 method)

 	(Ramsey\Uuid\Rfc4122\UuidV6 method)

 	(Ramsey\Uuid\Rfc4122\UuidV7 method)

 	getFields() (Ramsey\Uuid\Guid\Guid method)

 	(Ramsey\Uuid\Nonstandard\Uuid method)

 	(Ramsey\Uuid\Rfc4122\UuidInterface method)

 	(Ramsey\Uuid\UuidInterface method)

 	getHex() (Ramsey\Uuid\UuidInterface method)

 	
 	getInteger() (Ramsey\Uuid\UuidInterface method)

 	getLocalDomain() (Ramsey\Uuid\Rfc4122\UuidV2 method)

 	getLocalDomainName() (Ramsey\Uuid\Rfc4122\UuidV2 method)

 	getLocalIdentifier() (Ramsey\Uuid\Rfc4122\UuidV2 method)

 	getMicroseconds() (Ramsey\Uuid\Type\Time method)

 	getNode() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getPattern() (Ramsey\Uuid\Validator\ValidatorInterface method)

 	getSeconds() (Ramsey\Uuid\Type\Time method)

 	getTimeHiAndVersion() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getTimeLow() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getTimeMid() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getTimestamp() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getUrn() (Ramsey\Uuid\UuidInterface method)

 	getValidator() (Ramsey\Uuid\UuidFactoryInterface method)

 	getVariant() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	getVersion() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	Guid (class in Ramsey\Uuid\Guid)

H

 	
 	Hexadecimal (class in Ramsey\Uuid\Type)

I

 	
 	Integer (class in Ramsey\Uuid\Type)

 	InvalidArgumentException

 	InvalidBytesException

 	
 	InvalidUuidStringException

 	isNegative() (Ramsey\Uuid\Type\NumberInterface method)

 	isNil() (Ramsey\Uuid\Rfc4122\FieldsInterface method)

 	isValid() (Ramsey\Uuid\Uuid method)

M

 	
 	multiply() (Ramsey\Uuid\Math\CalculatorInterface method)

N

 	
 	NameException

 	
 	NodeException

 	NumberInterface (class in Ramsey\Uuid\Type)

R

 	
 	Ramsey\Uuid (namespace), [1], [2]

 	Ramsey\Uuid\Exception (namespace)

 	Ramsey\Uuid\Fields (namespace)

 	Ramsey\Uuid\Guid (namespace), [1]

 	Ramsey\Uuid\Math (namespace)

 	Ramsey\Uuid\Nonstandard (namespace), [1], [2]

 	Ramsey\Uuid\Rfc4122 (namespace), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	Ramsey\Uuid\Type (namespace)

 	Ramsey\Uuid\Validator (namespace)

 	RandomSourceException

 	
 	RoundingMode (class in Ramsey\Uuid\Math)

 	RoundingMode::CEILING (class constant)

 	RoundingMode::DOWN (class constant)

 	RoundingMode::FLOOR (class constant)

 	RoundingMode::HALF_CEILING (class constant)

 	RoundingMode::HALF_DOWN (class constant)

 	RoundingMode::HALF_EVEN (class constant)

 	RoundingMode::HALF_FLOOR (class constant)

 	RoundingMode::HALF_UP (class constant)

 	RoundingMode::UNNECESSARY (class constant)

 	RoundingMode::UP (class constant)

S

 	
 	setFactory() (Ramsey\Uuid\Uuid method)

 	
 	subtract() (Ramsey\Uuid\Math\CalculatorInterface method)

T

 	
 	Time (class in Ramsey\Uuid\Type)

 	TimeSourceException

 	toBase() (Ramsey\Uuid\Math\CalculatorInterface method)

 	toHexadecimal() (Ramsey\Uuid\Math\CalculatorInterface method)

 	toInteger() (Ramsey\Uuid\Math\CalculatorInterface method)

 	
 	toString() (Ramsey\Uuid\Type\TypeInterface method)

 	(Ramsey\Uuid\UuidInterface method)

 	toUuidV1() (Ramsey\Uuid\Nonstandard\UuidV6 method)

 	(Ramsey\Uuid\Rfc4122\UuidV6 method)

 	TypeInterface (class in Ramsey\Uuid\Type)

U

 	
 	UnableToBuildUuidException

 	UnsupportedOperationException

 	Uuid (class in Ramsey\Uuid)

 	(class in Ramsey\Uuid\Nonstandard)

 	uuid1() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	uuid2() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	uuid3() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	uuid4() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	uuid5() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	uuid6() (Ramsey\Uuid\Uuid method)

 	(Ramsey\Uuid\UuidFactoryInterface method)

 	uuid7() (Ramsey\Uuid\Uuid method)

 	Uuid::DCE_DOMAIN_GROUP (class constant)

 	Uuid::DCE_DOMAIN_ORG (class constant)

 	Uuid::DCE_DOMAIN_PERSON (class constant)

 	Uuid::NAMESPACE_DNS (class constant)

 	Uuid::NAMESPACE_OID (class constant)

 	Uuid::NAMESPACE_URL (class constant)

 	Uuid::NAMESPACE_X500 (class constant)

 	Uuid::NIL (class constant)

 	
 	Uuid::RESERVED_FUTURE (class constant)

 	Uuid::RESERVED_MICROSOFT (class constant)

 	Uuid::RESERVED_NCS (class constant)

 	Uuid::RFC_4122 (class constant)

 	Uuid::UUID_TYPE_DCE_SECURITY (class constant)

 	Uuid::UUID_TYPE_HASH_MD5 (class constant)

 	Uuid::UUID_TYPE_HASH_SHA1 (class constant)

 	Uuid::UUID_TYPE_PEABODY (class constant)

 	Uuid::UUID_TYPE_RANDOM (class constant)

 	Uuid::UUID_TYPE_REORDERED_TIME (class constant)

 	Uuid::UUID_TYPE_TIME (class constant)

 	Uuid::UUID_TYPE_UNIX_TIME (class constant)

 	UuidExceptionInterface (interface in Ramsey\Uuid\Exception)

 	UuidFactoryInterface (interface in Ramsey\Uuid)

 	UuidInterface (interface in Ramsey\Uuid)

 	(interface in Ramsey\Uuid\Rfc4122)

 	UuidV1 (class in Ramsey\Uuid\Rfc4122)

 	UuidV2 (class in Ramsey\Uuid\Rfc4122)

 	UuidV3 (class in Ramsey\Uuid\Rfc4122)

 	UuidV4 (class in Ramsey\Uuid\Rfc4122)

 	UuidV5 (class in Ramsey\Uuid\Rfc4122)

 	UuidV6 (class in Ramsey\Uuid\Nonstandard)

 	(class in Ramsey\Uuid\Rfc4122)

 	UuidV7 (class in Ramsey\Uuid\Rfc4122)

 	UuidV8 (class in Ramsey\Uuid\Rfc4122)

V

 	
 	validate() (Ramsey\Uuid\Validator\ValidatorInterface method)

 	
 	Validator (class in Ramsey\Uuid\Rfc4122)

 	ValidatorInterface (interface in Ramsey\Uuid\Validator)

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 ramsey/uuid Manual

 		
 Introduction

 		
 What Is a UUID?

 		
 Getting Started

 		
 Requirements

 		
 Install With Composer

 		
 Using ramsey/uuid

 		
 RFC 4122 UUIDs

 		
 Version 1: Gregorian Time

 		
 Providing a Custom Node

 		
 Generating a Random Node

 		
 What’s a Clock Sequence?

 		
 Privacy Concerns

 		
 Version 2: DCE Security

 		
 Domains

 		
 Custom and Random Nodes

 		
 Clock Sequence

 		
 Problems With Version 2 UUIDs

 		
 Version 3: Name-based (MD5)

 		
 Version 4: Random

 		
 Version 5: Name-based (SHA-1)

 		
 Custom Namespaces

 		
 Version 6: Reordered Time

 		
 Custom and Random Nodes

 		
 Clock Sequence

 		
 Version 1-to-6 Conversion

 		
 Ordered-time to Version 6 Conversion

 		
 Privacy Concerns

 		
 Version 7: Unix Epoch Time

 		
 Convert a Version 7 UUID to a ULID

 		
 Version 8: Custom

 		
 Nonstandard UUIDs

 		
 Version 6: Reordered Time

 		
 Globally Unique Identifiers (GUIDs)

 		
 Converting GUIDs to UUIDs

 		
 Other Nonstandard UUIDs

 		
 Using In a Database

 		
 Storing As a String

 		
 Storing As Bytes

 		
 Using As a Primary Key

 		
 Using As a Unique Key

 		
 Insertion Order and Sorting

 		
 Customization

 		
 Ordered-time Codec

 		
 Timestamp-first COMB Codec

 		
 Using a Custom Calculator

 		
 Using a Custom Validator

 		
 Replace the Default Factory

 		
 Testing With UUIDs

 		
 Inject a UUID of a Specific Type

 		
 Returning Specific UUIDs From a Static Method

 		
 Mocking UuidInterface

 		
 Upgrading ramsey/uuid

 		
 Version 3 to 4

 		
 What’s New?

 		
 What’s Changed?

 		
 Uuid Static Methods

 		
 Changed Return Types

 		
 Deprecations

 		
 Interface Changes

 		
 Constructor Changes

 		
 Version 2 to 3

 		
 FAQs

 		
 How do I fix “rhumsaa/uuid is abandoned” messages?

 		
 Why does ramsey/uuid use final?

 		
 But Why?

 		
 Overriding Behavior

 		
 Testing With UUIDs

 		
 Reference

 		
 Uuid

 		
 UuidInterface

 		
 Fields\FieldsInterface

 		
 Rfc4122\UuidInterface

 		
 Rfc4122\FieldsInterface

 		
 Rfc4122\UuidV1

 		
 Rfc4122\UuidV2

 		
 Rfc4122\UuidV3

 		
 Rfc4122\UuidV4

 		
 Rfc4122\UuidV5

 		
 Rfc4122\UuidV6

 		
 Rfc4122\UuidV7

 		
 Rfc4122\UuidV8

 		
 Guid\Fields

 		
 Guid\Guid

 		
 Nonstandard\Fields

 		
 Nonstandard\Uuid

 		
 Nonstandard\UuidV6

 		
 UuidFactoryInterface

 		
 Types

 		
 Exceptio